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Description

Geometric Algebra has developed in the last decades from earlier pioneering
mathematics of Grassmann and Clifford. It promises to stimulate new methods and
insights in all areas of science and engineering dealing with spatial relationships,
including computer graphics and related fields.  This course first introduces and
motivates the topic, and then provides example applications of interest for computer
graphics professionals and researchers.

Geometric Algebra unifies many different and redundant mathematical systems in current
use. It is especially useful for handling geometric problems, since it allows for intrinsic,
i.e., coordinate free, and dimensionally seamless descriptions of geometry.  It has wide
application in computer graphics, e.g., kinematics and dynamics, simplicial calculations
(polygons, FEM), fluid flow, collision detection, quaternion splines , elastic
deformations, curve and surface definition, vector fields etc.  In all cases, new insights
and improved algorithms invariably result. Geometric Algebra is a new and fundamental
language for the mathematics of computer graphics, as well as for modeling and
interactive techniques in general.
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Technology (KTH), Stockholm. He has been an early advocate of using projective geometry in
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research group at KTH, where he has headed the development of a number of computer
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graphics, and served as the 1999 SIGGRAPH papers' chair.

Relevant web-sites

that provide hands-on experience and extended resources:

1. http://www.cgl.uwaterloo.ca/~smann/GABLE/
The hands-on interactive tutorial that will be demonstrated in the course.  It
requires a copy of MATLAB.  It will also be available at the CAL.

2. http://modelingnts.la.asu.edu/GC_R&D.html
Hestenes' web-site with many of the latest research papers in a wide variety of
areas and links to other sites.

3. http://www.mrao.cam.ac.uk/~clifford/
This is the Cambridge University site.

4. http://www-sigproc.eng.cam.ac.uk/vision
Mainly computer vision applications (GA and non-GA).

5. http://cid.nada.kth.se/il
Several interactive mathematical learning environments (including GA).
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[a] mathematician is a Platonist on weekdays and a Formalist on Sundays.  That is, when doing mathematics he is 
convinced that he is dealing with objective reality � when challenged to give a philosophical account of this reality, 
he finds it easiest to pretend that he does not believe in it after all. ~P. Davis



Mathematics is Language

Nouns Verbs
scalar, vector scalar, dot & cross products,

scalar & vector addition
gradient, curl, �

real, imaginary addition, multiplication,
conjugation, �

points, line, circles � intersection, union, �

Primitive

Vector Algebra

Complex Analysis

Synthetic Geometry



A Redundant Language
� Synthetic Geometry

Coordinate Geometry
Complex Numbers
Quaternions
Vector Analysis
Tensor Analysis
Matrix Algebra
Grassmann Algebra
Clifford Algebra
Spinor Algebra
�

� Consequences
� Redundant learning
� Complicates knowledge access
� Frequent translation
� Lower concept density, i.e., theorems / definitions

Geometric
Concepts



A language for geometry

Properties of nouns
� Grade - dimension 
� Direction - orientation, attitude, how it sits in space

Properties of nouns
� Grade - dimension 
� Direction - orientation, attitude, how it sits in space

Geometric
Concepts

Algebraic
Language

Hermann Grassmann 1809 - 1977 (Our Hero)
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A language for geometry

Properties of nouns
� Grade - dimension 
� Direction - orientation, attitude, how it sits in space
� Magnitude - scalar 
� Sense - positive/negative, up/down, inside/outside

Properties of nouns
� Grade - dimension 
� Direction - orientation, attitude, how it sits in space
� Magnitude - scalar 
� Sense - positive/negative, up/down, inside/outside

Geometric
Concepts

Algebraic
Language

Hermann Grassmann 1809 - 1977 (Our Hero)



Geometric Algebra
D. Hestenes, New Foundations for Classical Mechanics, Kluwer Academic Publishers, 1990

Primitive nouns
� Point α scalar grade 0 
� Vector a directed line grade 1
� Bivector A directed plane        grade 2
� Trivector T directed volume     grade 3
� Etc.

Primitive nouns
� Point α scalar grade 0 
� Vector a directed line grade 1
� Bivector A directed plane        grade 2
� Trivector T directed volume     grade 3
� Etc.

Geometric
Concepts

Algebraic
Language



a ⊥⊥⊥⊥ b ⊥⊥⊥⊥ c => (ab) c = a (bc) = T

Verbs 

� Addition

� Multiplication

� Commutivity

� Anticommutivity

� Associativity

� and others

c

a
b c = a + b = b + a

a
b A = -BA = ab

a
bB = ba

a
b a || b => ab = ba

a

b
a ⊥⊥⊥⊥ b => ab = - ba

Geometric
Concepts

Algebraic
Language



Prepositions
William Kingston Clifford 1845 - 1879  (Another Hero) 

� Complex analysis

Addition defines relation, I.e. a + i b ≡≡≡≡ (a, b)

� Clifford�s �geometric product� for vectors

ab = a ⋅⋅⋅⋅ b + a ∧∧∧∧ b

scalar bivector
( dot product) (exterior product)

prepositional add



Geometric Algebra
Nouns k-vectors (scalar, vector, bi-vector �)

and multivectors (sums of k-vectors)

� Point α scalar grade 0 
� Vector a directed line grade 1
� Bivector A directed plane        grade 2
� Trivector T directed volume     grade 3
� �
� Multivector M sum of k-vectors    mixed grade

(M = α + a + A + T + �)



Geometric Algebra

Verbs Addition
(commutes, associates,  identity, inverse)

Familiar operation



Geometric Algebra

Verbs Addition
(commutes, associates,  identity, inverse)

Multiplication
( geometric product*)

New operation



Geometric Algebra

Verbs Addition
(commutes, associates,  identity, inverse)

Multiplication
( geometric product*)

a(α + A ) = aα + aA
Addition and multiplication distribute



The Geometric Product

What can two vectors do?
� Project a

b



The Geometric Product

What can two vectors do?
� Project
� Define bi-vector

a
b A = -BA = ab

b
aB = ba



The Geometric Product

What can two vectors do?
� Project
� Define bi-vector
� Commute a

b a || b => ab = ba



The Geometric Product

What can two vectors do?
� Project
� Define bi-vector
� Commute
� Anti-commute a

b
a ⊥⊥⊥⊥ b => ab = - ba



The Geometric Product

What can two vectors do?
� Project
� Define bi-vector
� Commute
� Anti-commute

ab = a⋅⋅⋅⋅ b + a ∧∧∧∧ b

a
b A = -BA = ab

b
aB = ba

a
b

a
b a || b => ab = ba

a

b
a ⊥⊥⊥⊥ b => ab = - ba



The Geometric Product

� is more basic!!
Dot product in terms of GP

a · b = 1/2 (ab + ba) scalar
Wedge product in terms of GP

a ∧∧∧∧ b = 1/2 (ab - ba) bivector

Note a · b + a ∧∧∧∧ b = ab



Examples

Reflection

For a2 = 1, -a x a = -a (xpar + xperp) a 
= - (a xpar + a xperp) a
= - (xpar a - xperp a) a 
= - (xpar - xperp) a2

= - xpar + xperp = x´

xpar
a x

xperp

-xparx´GA



Examples

Rotations (b2=1)

x´´ = -b x´b = -b (-a x a) b = (b a) x (a b)
(b a) x (a b) rotates x
through 2 ∠∠∠∠ ab b a

x

x´

x´´



Examples   
Let  a � b = 0   and a2 = b2 = 1,   define i = a b = -b a

i is an operator:

a i = a ( a b ) = a2 b = b
rotates a by 90 degrees to b
b i = ( a i ) i = a i2 = -a
rotates a twice, giving i2 = -1

i i
b

-a a



Examples   
Let  a · b = 0   and a2 = b2 = 1,   define i = a b = -b a

i is an operator:

a i = a ( a b ) = a2 b = b
rotates a by 90 degrees to b
b i = ( a i ) i = a i2 = -a
rotates a twice, giving i2 = -1

Bivectors rotate vectors ( ! )

i i
b

-a a



Recapitulation

� Graded elements with sense, direction and 
magnitude

� Addition - verb and preposition
� Geometric product is sum of lower and higher 

grades
� Dot and Wedge products defined by GP
� Two-sided vector multiplication reflects
� Bivector multiplication rotates vectors
� Special unit bivector I  (pseudoscalar)



Axioms

1. Algebra with non-commutative multiply

Think of matrix algebra



Axioms

1. Algebra with non-commutative multiply
2. Scalar multiplication commutes λλλλ A = A λλλλ
3. For vector a2 = |a|2 ≥≥≥≥ 0, a scalar
4. a � Ak is a k-1 vector and a ∧∧∧∧ Ak is a k+1 vector 

where  a � Ak = 1/2(aAk � (1)-k Ak a)
and     a ∧∧∧∧ Ak = 1/2(aAk + (1)-k Ak a)

Differentiate elements of different grade



Axioms

1. Algebra with non-commutative multiply
2. Scalar multiplication commutes λλλλ A = A λλλλ
3. For vector a2 = |a|2 ≥≥≥≥ 0, a scalar
4. a � Ak is a k-1 vector and a ∧∧∧∧ Ak is a k+1 vector 

where  a � Ak = 1/2(aAk � (1)-k Ak a)
and     a ∧∧∧∧ Ak = 1/2(aAk + (1)-k Ak a)

Generalizes dot and wedge products



Axioms

Truncates space to k dimensions

5.  a ∧∧∧∧ Ak = 0 for a k-dimensional space



Axioms

1. Non-commutative algebra � add and multiply
2. Scalar multiplication commutes λλλλ A = A λλλλ
3. For vector a2 = |a|2 ≥≥≥≥ 0, a scalar
4. a � Ak is a k-1 vector and a ∧∧∧∧ Ak is a k+1 vector 

where  a � Ak = 1/2(aAk � (1)-k Ak a)
and     a ∧∧∧∧ Ak = 1/2(aAk + (1)-k Ak a)

1. a ∧∧∧∧ Ak = 0 for a k-dimensional space



Example Algebra
Straight Lines

(x-a) ∧∧∧∧ u = 0 defines line
x ∧∧∧∧ u = x ∧∧∧∧ a = M, a bivector
(x ∧∧∧∧ u)u-1 = Mu-1 (division by vector!)
(x ∧∧∧∧ u) � u-1 + (x ∧∧∧∧ u) ∧∧∧∧ u-1 = Mu-1  (expansion of GP)
(x ∧∧∧∧ u) � u-1 + 0 = Mu-1 (wedging parallel vectors)
x � (x � u) u-1 = Mu-1 (Laplace reduction theorem)
x = (M + x � u) u-1

= (M + αααα) u-1

Parametric form for fixed M and u.

u

a



Example Algebra
Straight Lines

(x-a) ∧∧∧∧ u = 0 defines line
x = (M + x � u) u-1

= (M + αααα) u-1

Parametric form for fixed M and u.
�or let d = Mu-1

x = d + αααα u-1 , where
d � u = Mu-1 � u
d � u = 0 (grade equivalence)

d is orthogonal to u

u

a

d



Representations
Complex analysis
Duality
Quaternions
Vector algebra
Spherical geometry

Let z = ab = a · b + a ∧ b  (a2 = b2 = 1)

Let z� = ba = (ab)� (reverse = conjugate)

Since a · b = 1/2(ab + ba) = 1/2(z + z�) 

= Re z = λcosθ

and a ∧ b = 1/2(ab - ba) = 1/2(z - z�)

= Im z = λisinθ

then z = λ(cos θ + isinθ) = λeiθ

The shortest path to truth in the real domain 
often passes through the complex domain

Hadamard



Representations
Complex analysis
Duality
Quaternions
Vector algebra
Spherical geometry

Let σσσσ1, σσσσ2 and σσσσ3 be 
orthonormal basis vectors
then 

{1,  σσσσ1, σσσσ2, σσσσ3, σσσσ1σσσσ2, σσσσ1σσσσ3, σσσσ2σσσσ3,  σσσσ1σσσσ2 σσσσ3 }
is a basis for the geometric algebra over R3



Representations
Complex analysis
Duality
Quaternions
Vector algebra
Spherical geometry

Let σσσσ1, σσσσ2 and σσσσ3 be 
orthonormal basis vectors
then 

{1,  σσσσ1, σσσσ2, σσσσ3, σσσσ1σσσσ2, σσσσ1σσσσ3, σσσσ2σσσσ3,  σσσσ1σσσσ2 σσσσ3 }

Scalar     vector      bivector       trivector
Let  I = σσσσ1σσσσ2 σσσσ3 , the pseudoscalar
What are:    (σσσσ1σσσσ2 σσσσ3 )2 = I 2?    I σσσσ1?   I σσσσ1 σσσσ2? 



Representations
Complex analysis
Duality
Quaternions
Vector algebra
Spherical geometry

Let σσσσ1, σσσσ2 and σσσσ3 be 
orthonormal basis vectors
then 

Let  I = σσσσ1σσσσ2 σσσσ3 , the pseudoscalar

What are:    (σσσσ1σσσσ2 σσσσ3 )2 = I 2?    I σσσσ1?   I σσσσ1 σσσσ2? 



Representations
Complex analysis
Duality
Quaternions
Vector algebra
Spherical geometry

(σσσσ1σσσσ2 σσσσ3 )2 = I 2 = -1

I σσσσ1 ?

I σσσσ1 σσσσ2 ? 



Representations
Complex analysis
Duality
Quaternions
Vector algebra
Spherical geometry

(σσσσ1σσσσ2 σσσσ3 )2 = I 2 = -1    
I σσσσ1 = σσσσ2 σσσσ3

transforms σσσσ1 to σσσσ2σσσσ3
I σσσσ1 σσσσ2 = σσσσ3

transforms σσσσ1 σσσσ2 to σσσσ3σσσσ1

σσσσ2σσσσ3

I σσσσ1 = σσσσ2 σσσσ3



Representations
Complex analysis
Duality
Quaternions
Vector algebra
Spherical geometry

In general: 

scalar

vector

•

•

N-1 vector

N vector

Pseudoscalar 
multiplication



Representations
Complex analysis
Duality
Quaternions
Vector algebra
Spherical geometry

Let  i = σσσσ2 σσσσ3

j = σσσσ3 σσσσ1

k = σσσσ1 σσσσ2

then

i 2 = j 2 = k 2 = -1  and  i j k = -1

Hamilton�s equations for quaternions!



Representations
Complex analysis
Duality
Quaternions
Vector algebra
Spherical geometry

If (s, q1, q2, q3) is a quaternion

then

R = s + i q1 + j q2+ k q3

scalar bivector

Is a general rotor in GA Recall x' = RxR�

Note: i, j, k are bivectors!



Representations
Complex analysis
Duality
Quaternions
Vector algebra
Spherical geometry a×××× b = -i a∧∧∧∧ b

a∧∧∧∧ b = -i a×××× b 

a

b



Representations
Complex analysis
Duality
Quaternions
Vector algebra
Spherical geometry

A = bc

B = ca

C = AB?

c

a
b

BA



Representations
Complex analysis
Duality
Quaternions
Vector algebra
Spherical geometry

A = bc

B = ca

C = AB =bcca = ba

c

a
b

C



Advantages of GA

� Unifying
� compact knowledge, enhanced learning, 

eliminates redundancies and translation
� Geometrically intuitive
� Efficient

� reduces operations, coordinate free, 
separation of parts

� Dimensionally fluid
� equations across dimensions



Bivectors

≠≠≠≠

Examples:

Not two vectors



The Geometry of the Algebra
SIGGRAPH 2001, Course #53

Leo Dorst Stephen Mann
University of Amsterdam University of Waterloo

Amsterdam, The Netherlands Waterloo, ON, Canada
leo@science.uva.nl smann@cgl.uwaterloo.ca

Geometric Algebra

• The geometric product ab does it all

• Algebraically, it is

– linear

– associative

– non-commutative

– invertible

• We will visualize these properties

Properties

Algebra Geometry
anti-commutation 1

2
(ab− ba) a ∧ b spanning

commutation 1
2
(ab+ ba) a · b complementation

perpendicularity

invertibility orthogonalization

division rotation



2 Leo Dorst and Stephen Mann

Outer product: spanning

a ∧ b = −b ∧ a

• dimensionality

• attitude

• sense

• magnitude

• Equivalence
a ∧ (b− a) = a ∧ b

Amount of oriented area in a plane

DEMOouter

• Given a, all x with same x ∧ a are on a line

• Extension: a ∧ b ∧ c is a volume

• dim(A ∧B) = dim(A) + dim(B) (but beware of overlap)
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Inner product

a · b = b · a

• A ·B is part of B perpendicular to A

• Given a, all x with same x · a are on a hyperplane

DEMOinner

• dim(A ·B) = dim(B) — dim(A)

Geometric Product is Invertible

• Now put it all together:

Given a and x · a and x ∧ a, we can reconstruct x

DEMOinvertible

• xa = x · a+ x ∧ a is invertible



4 Leo Dorst and Stephen Mann

The Parts of the Geometric Product

• You can separate the parts: x · a is a scalar

while x ∧ a is bivector, but they don’t “mix”

• What is ‘+’ doing?

x = (xa)/a = (x · a)/a+ (x ∧ a)/a

Are two terms on right both vectors?

Perpendicularity

Consider x = x⊥ + x|| relative to some vector a

• Geometrically: x⊥ is part of x perpendicular to a

• Classically: x⊥ ∧ a = x ∧ a and x⊥ · a = 0

• Geometric Algebra: x⊥a = x ∧ a
Solvable: x⊥ = (x ∧ a)/a

Parallel Component

• Geometrically: x|| is part of x parallel to a

• Classically: x|| ∧ a = 0 and x|| · a = x · a
• Geometric Algebra: x||a = x · a

Solvable: x|| = (x · a)/a
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Rotations

• Many ways to do rotations in geometric algebra

• Given x and plane I containing x (so x ∧ I = 0)

Rotate x in the plane

DEMOrotdefinition

• Coordinate free view

Rx = bit of x and bit of perpendicular to x

(amounts depend on rotation angle)

• Perpendicular to x in I plane (anti-clockwise) is

x · I = xI = −Ix

• Rotation as post-multiply:

Rx = x(cosφ) + (xI)(sinφ) = x(cosφ+ I sinφ)

• Rotation as pre-multiply:

Rx = (cosφ) + (sinφ)(−Ix) = (cosφ− I sinφ)x
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Complex Rotations

• Related to complex numbers

II = −1

but I has a geometrical meaning

• We can write cosφ+ I sinφ = eIφ

• Each rotation plane has own bivector I

so many “complex numbers” in space

• Bivector basis (i = e2 ∧ e3, j = e3 ∧ e1, k = e1 ∧ e2)

I = αi + βj + γk

Rotations in 3D

• Pick rotation plane I and (possibly non-coplanar) vector x

x = x⊥ + x||

Would like to get RIφx = x⊥ +RIφx||.

• x|| rotation:

either e−Iφx|| or x||e
Iφ (or even e−Iφ/2x||e

Iφ/2)

• x⊥ rotation:

e−Iφx⊥ = cosφx⊥︸ ︷︷ ︸
vector

− sinφ (Ix⊥)︸ ︷︷ ︸
trivector

x⊥e
−Iφ = cosφx⊥ + sinφ (x⊥I)

(e−Iφx⊥)eIφ = cosφx⊥e
Iφ − sinφ Ix⊥e

Iφ

= cos2 φx⊥ + cosφ sinφx⊥I

− sinφ cosφ Ix⊥ − sin2 φ Ix⊥I

= cos2 φx⊥ − sin2φ IIx⊥

= (cos2 φ+ sin2 φ)x⊥

= x⊥
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• Bottom line:

e−Iφ/2xeIφ/2 = x⊥ +RIφx|| = RIφx

Rotors

• So R−Iφx = e−Iφ/2xeIφ/2

• Further,

R−IφX = e−Iφ/2XeIφ/2 = RXR−1

where X is any geometric object (vector, plane, volume, etc.)

DEMOrotor

• R = e−Iφ/2 is called a rotor

R−1 = eIφ/2 is called the inverse rotor

Quaternions

• A rotor is a (unit) quaternion

• i, j, k are not complex numbers, they are

– bivectors (not vectors!)

– rotation operators for the coordinate planes

– basis for planes of rotation

– an intrinsic part of the algebra
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Composing Rotations

Composition of rotations through multiplication

(R2 ◦ R1)x = R2(R1xR
−1
1 ) = (R2R1)x(R2R1)−1

• R2R1 is again a rotor.

It represents the rotation R2 ◦ R1

• Note: use geometric product to multiply rotors/quaternions

No new product is needed

Interpolation

R = eIφ/2 = (eIφ/2/neIφ/2/n . . .︸ ︷︷ ︸
n

)

Do 1 rotation in n similar steps

DEMOinterpolation
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Briefly: Linear Algebra

• If a linear transformation of vectors is known

it is easily extended to k-vectors/blades

• This is called an outermorphism

• So linear algebra applies to higher dimensional objects
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Homogeneous model

• Get affine/homogeneous spaces by using one dimension for
“point at zero”

– Point: P = e+ p such that e · p = 0

– Vector: v such that e · v = 0

– Tangent plane: bivector B such that e ·B = 0 (not a
normal!)

– Line: point P , point Q: P ∧Q = (e+ p) ∧ (q − p)
– Line: direction v, point P : P ∧ v = (e+ p) ∧ v

DEMOhomogeneous



SIGGRAPH 2001, Course #53 11

Meet and Join

• Homogeneous line intersection requires blade intersection:
meet(A,B)

• Dual operation, join(A,B), spans lowest grade subspace of A
and B.

DEMOhomogeneousmeet

For a free copy of GABLE and a geometric algebra tutorial, see
http://www.science.uva.nl/~leo/clifford/gable.html

http://www.cgl.uwaterloo.ca/~smann/GABLE/
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Abstract

Geometric algebra is a consistent computational framework in which to
define geometric primitives and their relationships. This algebraic approach
contains all geometric operators and permits specification of constructions in
a totally coordinate-free manner. Since it contains primitives of any dimen-
sionality (rather than just vectors) it has no special cases: all intersections of
primitives are computed with one general incidence operator. We show that
the quaternion representation of rotations is also naturally contained within
the framework. Models of Euclidean geometry can be made which directly
represent the algebra of spheres.

1 Beyond vectors

In the usual way of defining geometrical objects in fields like computer graphics,
robotics and computer vision, one uses vectors to characterize the construction. To
do this effectively, the basic concept of a vector as an element of a linear space
is extended by an inner product and a cross product, and some rather extraneous
constructions such as homogeneous coordinates and Grassmann spaces (see [7]) to
encode compactly the intersection of, for instance, offset planes in space. Many
of these techniques work rather well in 3-dimensional space, although some prob-
lems have been pointed out: the difference between vectors and points, and the
affine non-covariance of the normal vector as a characterization of a tangent line
or tangent plane (i.e. the normal vector of a transformed plane is not the transform
of the normal vector). These problems are then traditionally fixed by the intro-
duction of certain data structures with certain combination rules; object-oriented
programming can be used to implement this patch tidily.

1



2 Leo Dorst and Stephen Mann

Yet there are deeper issues in geometric programming which are still accepted
as ‘the way things are’. For instance, when you need to intersect linear subspaces,
the intersection algorithms are split out in treatment of the various cases: lines and
planes, planes and planes, lines and lines, et cetera, need to be treated in separate
pieces of code. The linear algebra of the systems of equations with its vanish-
ing determinants indicates changes in essential degeneracies, and finite and infinite
intersections can be nicely unified by using homogeneous coordinates. But there
seems no getting away from the necessity of separating the cases. After all, the out-
comes themselves can be points, lines or planes, and those are essentially different
in their further processing.

Yet this need not be so. If we could see subspaces as basic elements of compu-
tation, and do direct algebra with them, then algorithms and their implementation
would not need to split their cases on dimensionality. For instance,

�����
could be

‘the subspace spanned by the spaces
�

and
�

’, the expression
�����

could be ‘the
part of

�
perpendicular to

�
’; and then we would always have the computation

rule � �	�
�
����
������ � ����
�� since computing the part of



perpendicular to the
span of

�
and

�
can be computed in two steps, perpendicularity to

�
followed by

perpendicularity to
�

. Subspaces therefore have computational rules of their own
which can be used immediately, independent of how many vectors were used to
span then (i.e. independent of their dimensionality). In this view, the split in cases
for the intersection could be avoided, since intersection of subspaces always leads
to subspaces. We should consider using this structure, since it would enormously
simplify the specification of geometric programs.

This paper intends to convince you that subspaces form an algebra with well-
defined products which have direct geometric significance. That algebra can then
be used as a language for geometry, and we claim that it is a better choice than
a language always reducing everything to vectors (which are just 1-dimensional
subspaces). It comes as a bit of a surprise that there is really one basic product
between subspaces that forms the basis for such an algebra, namely the geometric
product. The algebra is then what mathematicians call a Clifford algebra. But for
applications, it is often very convenient to consider ‘components’ of this geomet-
ric product; this gives us sensible extensions, to subspaces, of the inner product
(computing measures of perpendicularity), the cross product (computing measures
of parallelness), and the ������� and �����! (computing intersection and union of sub-
spaces). When used in such an obviously geometrical way, the term geometric
algebra is preferred to describe the field.

In this paper, we will use the basic products of geometric algebra to describe all
familiar elementary constructions of basic geometric objects and their quantitative
relationships. The goal is to show you that this can be done, and that it is compact,
directly computational, and transcends the dimensionality of subspaces. We will
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not use geometric algebra to develop new algorithms for graphics; but we hope you
to convince you that some of the lower level algorithmic aspects can be taken care
of in an automatic way, without exceptions or hidden degenerate cases by using
geometric algebra as a language – instead of only its vector algebra part as in the
usual approach.

2 Subspaces as elements of computation

As in the classical approach, we start with a real vector space ��� which we use
to denote 1-dimensional directed magnitudes. Typical usage would be to employ
a vector to denote a translation in such a space, to establish the location of a point
of interest. (Points are not vectors, but their locations are.) Another usage is to
denote the velocity of a moving point. (Points are not vectors, but their velocities
are.) We now want to extend this capability of indicating directed magnitudes
to higher-dimensional directions such as facets of objects, or tangent planes. In
doing so, we will find that we have automatically encoded the algebraic properties
of multi-point objects such as line segments or circles. This is rather surprising,
and not at all obvious from the start. For educational reasons, we will start with
the simplest subspaces: the ‘proper’ subspaces of a linear vector space which are
lines, planes, etcetera through the origin, and develop their algebra of spanning
and perpendicularity measures. Only in Section refmodels do we show some of
the considerable power of the products when used in the context of models of
geometries.

2.1 Vectors

So we start with a real � -dimensional linear space ��� , of which the elements
are called vectors. They can be added, with real coefficients, in the usual way to
produce new vectors.

We will always view vectors geometrically: a vector will denote a ‘1-dimensional
direction element’, with a certain ‘attitude’ or ‘stance’ in space, and a ‘magnitude’,
a measure of length in that direction. These properties are well characterized by
calling a vector a ‘directed line element’, as long as we mentally associate an ori-
entation and magnitude with it: � is not the same as ��� or 	
� .

2.2 The outer product

In geometric algebra, higher-dimensional oriented subspaces are also basic ele-
ments of computation. They are called blades, and we use the term � -blade for
a � -dimensional homogeneous subspace. So a vector is a 1-blade. (Again, we
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first focus on ‘proper’ linear subspaces, i.e. subspaces which contain the origin:
the � -dimensional homogeneous subspaces are lines through the origin, the 	 -
dimensional homogeneous subspaces are planes through the origin, etc.)

A common way of constructing a blade is from vectors, using a product that
constructs the span of vectors. This product is called the outer product (sometimes
the wedge product) and denoted by

�
. It is codified by its algebraic properties,

which have been chosen to make sure we indeed get � -dimensional space elements
with an appropriate magnitude (area element for �

�
	 , volume elements for

�
���

). As you have seen in linear algebra, such magnitudes are determinants
of matrices representing the basis of vectors spanning them. But such a definition
would be too specifically dependent on that matrix representation. Mathematically,
a determinant is viewed as an anti-symmetric linear scalar-valued function of its
vector arguments. That gives the clue to the rather abstract definition of the outer
product in geometric algebra:

The outer product of vectors ����� ����� ���
	 is anti-symmetric, asso-
ciative and linear in its arguments. It is denoted as ��� � ����� � ��	 , and
called a � -blade.

The only thing that is different from a determinant is that the outer product is
not forced to be scalar-valued; and this gives it the capability of representing the
‘attitude’ of a � -dimensional subspace element as well as its magnitude.

2.3 2-blades in 3-dimensional space

Let us see how this works in the geometric algebra of a 3-dimensional space ��
 .
For convenience, let us choose a basis ��������������� 


�
in this space, relative to which

we denote any vector (there is no need to choose this basis orthonormally – we have
not mentioned the inner product yet – but you can think of it as such if you like).
Now let us compute � ��� for � ��� ������� � ��� �!� �


 � 
 and
� ��" ���
�#� " �$���!� "


 � 
 .
By linearity, we can write this as the sum of six terms of the form

� � " ���
� � � � or� � " ���
� � �
� . By anti-symmetry, the outer product of any vector with itself must
be zero, so the term with

� � " � � � � � � and other similar terms disappear. Also by
anti-symmetry, � � � � � � �%� � � � � , so some terms can be grouped. You may
verify that the final result is:

&('*),+
+ -/.#0�120435.�6�1�6735.�8�1�8�9!':-<;=0�1#043>;?6�1�6�3>;?8�1�8�9
+ -/.#0=;?6A@,.�6�;�0�9�1#04'*1�673B-/.�6=;?8C@,.�8=;�6�9�1�6D'E1�8�3F-<.G8$;�07@H.#0�;?8$9�1�8�'E120 (1)

We cannot simplify this further. Apparently, the axioms of the outer product permit
us to decompose any 2-blade in 3-dimensional space onto a basis of 3 elements.
This ‘2-blade basis’ (also called ‘bivector basis) ���D� � ���I��� � � � 
 ��� 


� ��� � consists
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�
�

�

(d)

� � � � ��
�

� �H�

(c)(a)

� �

(b)

origin originorigin

Figure 1: Spanning proper subspaces using the outer product.

of 2-blades spanned by the basis vectors. Linearity of the outer product implies
that the set of 2-blades forms a linear space on this basis. We will interpret this
as the space of all plane elements or area elements. Let us show that they have
indeed the correct magnitude for an area element. That is particularly clear if we
choose a particular orthonormal basis ��������������� 


�
, chosen such that � lies in the

� � -direction, and
�

lies in the � � � ��� � � -plane. Then � ��� � � , � � "�������� � � �"��
	��
� � � (with
�

the angle from � to
�

), so that

� � ��� � � "��
	���� � �
� � � � (2)

This single result contains both the correct magnitude of the area
� "��
	��
�

spanned
by � and

�
, and the plane in which it resides – for we should learn to read ��� � � �

as ‘the unit directed area element of the � �4������� � -plane’. Since we can always adapt
our coordinates to vectors in this way, this result is universally valid: � �5�

is an
area element of the plane spanned by � and

�
.

You can visualize this as the parallelogram spanned by � and
�

, but you should
be a bit careful: the shape of the area element is not defined in � � � . For instance,
by the properties of the outer product, � � � � � � � � ����� � , for any � , so
the parallelogram can be sheared. Also, the area element is free to translate: the
sum of the area elements �� � � � � �

, �� � � � � �%� � � , �� � � �%� ��� � � � � � , �� � � � � � � � �
equals � � � ; drawing this equation shows that we should imagine the area element
to have no specific location in its plane. You may also verify that an orthogonal
transformation of � and

�
in their common plane (such as a rotation in that plane)

leaves � �(� unchanged. (This is obvious once you know the result for determinants
and note that � �F�

can always be expressed as in eq.(1), but we will revisit its
deeper meaning in Section 7).

It is important to realize that the 2-blades have an existence of their own, in-
dependent of any vectors that one might use to define them; that is reflected in the
fact that they are not parallelograms. Planes (or, more precisely, plane elements)
are nouns in our computational geometrical language, of the same basic nature as
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vectors (or line elements).

2.4 Volumes as 3-blades

We can also form the outer product of three vectors � ,
�

, � . Considering each of
those decomposed onto their 3 components on some basis in our 3-dimensional
space (as above), we obtain terms of three different types, depending on how many
common components occur: terms like

� � " ����� � � � � � � � � , like
� � " ����� � � � � � � � � ,

and like
� � " � � 
 �
�

� ��� � � 
 . Because of associativity and anti-symmetry, only the
last type survives, in all its permutations. The final result is:

� � � � � � � � � " ��� 
 �
� � " 
 ��� �

� � " ��� 
 �
� � " 
 ��� �

�


" ���=� � �



" ����� � � � � � � � � 
 �

The scalar factor is the determinant of the matrix with columns � ,
�

, � , which is
proportional to the signed volume spanned by them (as is well known from linear
algebra). The term � � � � � � � 
 is the denotation of which volume is used as unit:
that spanned by � �$��� ����� 
 . The order of the vectors gives its orientation, so this
is a ‘signed volume’. In 3-dimensional space, there is not really any other choice
for the construction of volumes than (possibly negative) multiples of this volume.
But in higher dimensional spaces, the attitude of the volume element needs to be
indicated just as much as we needed to denote the attitude of planes in 3-space.

2.5 Linear dependence

Note that if the three vectors are linearly dependent, they satisfy:

� ,
�

, � linearly dependent ��� � �H� � � �	�
�

We interpret the latter immediately as the geometric statement that the vectors span
a zero volume. This makes linear dependence a computational property rather than
a predicate: three vectors can be ‘almost linearly dependent’. The magnitude of
� � � � � obviously involves the determinant of the matrix � � � � � , so this view
corresponds with the usual computation of determinants to check degeneracy.

2.6 The pseudoscalar as hypervolume

Forming the outer product of four vectors � � ��� � ��
 in 3-dimensional space
will always produce zero (since they must be linearly dependent). To see this,
just decompose the vectors on some basis (for instance, the fourth vector on a basis
formed by the other 3), and apply the outer product. Since � � � � � � � is proportional
to �
� � ��� � � 
 , multiplication by



will always lead to terms like �4� � ��� � � 


� ��� ,
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in which at least two vectors are the same. Associativity and anti-symmetry then
makes all terms equal to zero.

The highest order blade which is non-zero in an � -dimensional space is there-
fore an � -blade. Such a blade, representing an � -dimensional volume element, is
called a pseudoscalar for that space (for historical reasons); unfortunately a rather
abstract term for the elementary geometric concept of ‘hypervolume element’.

The dimensionality of a � -blade is the number of vector factors that span it;
this is usually called the grade of the blade. It obeys the simple rule:

������� � ��� �
	 � � ������� � ��� � � �����
� � � 	
� � (3)

Of course the outcome may be
�
, so this zero element of the algebra should be seen

as an element of arbitrary grade. There is then no need to distinguish separate zero
scalars, zero vectors, zero 2-blades.

2.7 Scalars as subspaces

To make scalars fully admissible elements of the algebra we have so far, we can de-
fine the outer product of two scalars, and a scalar and a vector, through identifying
it with the familiar scalar product in the vector space we started with:

� ��� � � ������� � � � � � �

This automatically extends (by associativity) to the outer product of scalars with
higher order blades.

We will denote scalars mostly by Greek lower case letters. Since they are
constructed by the outer product of zero vectors, we can interpret the scalars as the
representation in geometric algebra of 0-dimensional subspace elements, i.e. as a
weighted points at the origin – or maybe you prefer ‘charged’, since the weight can
be negative. This is indeed consistent, we will get back to that when intersecting
subspaces in Section 4.

2.8 The Grassmann algebra of 3-space

Collating what we have so far, we have constructed a geometrically significant
algebra containing only two operations: the addition � and the outer multiplica-
tion

�
(subsuming the usual scalar multiplication). Starting from scalars and a

3-dimensional vector space we have generated a 3-dimensional space of 2-blades,
and a 1-dimensional space of 3-blades (since all volumes are proportional to each
other). In total, therefore, we have a set of elements which naturally group by their
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dimensionality. Choosing some basis ��� � ��� � ��� 

�
, we can write what we have as

spanned by the set:���� ��� ������
	
scalars

� � � ��� � ��� 
� ��� 	
vector space

��� � � � � �A� � � � 
 �A� 

� � �� ��� 	

bivector space

� � � � � � � � 
� ��� 	
trivector space

� ��

��� (4)

Every � -blade formed by
�

can be decomposed on the � -vector basis using � .
The ‘dimensionality’ � is often called the grade or step of the � -blade or � -vector,
reserving the term dimension for that of the vector space which generated them. A
� -blade represents a � -dimensional oriented subspace element.

If we allow the scalar-weighted addition of arbitrary elements in this set of
basis blades, we get an 8-dimensional linear space from the original 3-dimensional
vector space. This space, with � and

�
as operations, is called the Grassmann

algebra of 3-space.
We have no interpretation (yet) for mixed-grade terms such as �!�,��� . Actually,

even addition of elements of the same grade is hard to interpret in spaces of more
than 3 dimensions, since it easily leads to elements that cannot be decomposed
using the outer product – so to non-blades, i.e. objects that cannot be ‘spanned’ by
vectors. (For instance, � � � ��� � � 


� � � in 4-space cannot be written in the form
� � �

– try it!) The general term for the sum of � -blades (for the same � ) is � -
vector, and the general term for the mixed-grade elements permitted in Grassmann
algebra is multivector.

2.9 Many blades

¿From the way it is constructed through the anti-symmetric product, it should be
clear that the � -dimensional subspaces of an � -dimensional space have a basis
which consists of a number of independent elements equal to the number of ways
one can take � distinct indices from a set of � indices. That is

The linear space of � -vectors in � -space is � � 	 � -dimensional.

Adding them all up, we find:

The linear space of all subspaces of an � -dimensional vector space is
	
� -dimensional.

To have a basis for all possible subspaces (through the origin) in 3-dimensional
space takes 	2
 ���

elements, such as in eq.(4). You can characterize an element �
of that space therefore by a

��� � matrix � ��� . Since the outer product by another
element vector

�
is linear,

� � � can be written as the action of a linear operator
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���
on � , and hence be represented as a matrix multiplication � ��� � � � � , with � ��� �

an
� ���

matrix. This is not a particularly efficient representation, but it shows that
this algebra of � and

�
on a vector space is just a special linear algebra; a fact

which may give you some confidence that it is at least consistent.
When they just learn about this algebra, most people are put off by how many

blades there are, and some have rejected the practical use of geometric algebra
because of its exponentially large basis. This is a legitimate concern, and the im-
plementation just sketched obviously does not scale well with dimensionality. For
now, a helpful view may be to see this 	 � -dimensional basis as a cabinet in which
all relationships which we may care to compute in the course of our computa-
tions in � -dimensional space can be filed properly: � -point relationships in the
� � 	 � files in the � -th drawer. And the files themselves have clear computational
relationships (we have seen the outer product, more will follow). This should be
compared to the usual way in which such � -point relationships are made whenever
they are needed, but not preserved in a structural way relating them algebraically
to the other relationships of the application. This simile suggests that there might
be some potential gain in building up the overall structure rather than reinventing
it several times along the way, as long as we make sure that this organization does
not affect the efficiency of individual computations too much. This paper should
provide you with sufficient material to ponder this new possibility.

3 Relative subspaces measures

The outer product gives computational meaning to the notion of ‘spanning sub-
spaces’. It does not use any metric structure which we may have available for our
original vector space � � . The familiar inner product of vectors in a vector space
does use the metric – in fact, it defines the metric, since it gives a bilinear form
returning a scalar value � ��� for each pair of vectors, which can be used to defined
the distance measure

� � � � � � � � � � � �
. Now that vectors are viewed as rep-

resentatives of 1-dimensional subspaces, we of course want to extend this metric
capability to arbitrary subspaces. This leads to the scalar product, and its meshing
with the outer product gives a generalized inner product between blades.

3.1 The scalar product: a metric for blades

Between two blades �H	 and
	 	 of the same grade � , we can define a metric mea-

sure. The most computational way of doing so is to span each of the blades by �
vectors: �,	 � ��� � ��� � ����� � ��	 and

	 	 � � � � �
�
������� �5� 	 . Then the scalar
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product between them is defined as:

�,	�� 	 	��
����������

�4� ��� 	 ��� ��� 	�� � ����� �4� ��� �
�
� ��� 	 ��� ��� 	�� � ����� �
� ��� �

...
...

. . .
...

��	 �I� 	 ��	 �G� 	�� � ����� ��	 �I� �

����������
(5)

The unfortunate order of the factors was chosen historically. We get a nicer form
if we introduce an operation that reverses a factorization, for instance � � � � �
� � � � 
 would become � 


� � � � � � . (We need this for other purposes as well,
or we would have preferred to fix the scalar product.) Due to the anti-symmetry
of the outer product, these differ only by a sign factor, for a � -blade a sign of

� � � � �� 	�� 	�� �	� . We denote it by a tilde, so:


� � � 


� ��� � ��� � � � . Now

� � 	

has nicely matching coefficients.
The value of



��� 	 is independent of the factorization of � and

	
, as you

may verify by the properties of determinants: adding a multiple of, say ��� to �4�
leaves the blade � unchanged, so it should give the same answer. In



� � 	

, it leads
to addition of a multiple of the second column to the first, and this indeed leaves
the determinant unchanged – the two anti-symmetries in the definitions of

�
and �

match well. The value of


��� 	 is proportional to the cosine of the angle of the

two subspaces – if a rotation exists that rotates one into the other, otherwise it is
zero. The definition is extended to blades of different grade by setting �
� 	 � �

whenever the grades are different. So no scalar metric comparison is possible
between such different subspaces (but for them we have the inner product of the
next section).

The scalar product of a subspace with itself gives us the norm of the subspace,
defined as 1: �

�
� ��� 
�
� � (6)

For a 2-blade � � �D� � ��� , with an angle of
�

between �D� and ��� , you may
verify that this gives

�
�
� � � �D� ��� ��� ��� �
	���� � , the absolute value of the area measure,

precisely what one would hope.

3.2 The inner product

The geometric nature of blades means that there are relationships between the met-
ric measures of different grades: for instance, the angle two 2-blades make is re-
lated to that of two properly chosen vectors in their planes (see Figure 2). We

1This works only in a Euclidean metric in a real vector space; in other metrics one should define
the ‘norm squared’ and avoid the square root.
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Figure 2: The metric relationship between different spans.

should therefore be capable of relating those numerically. If a blade is spanned as
� � 	 , and we are interested in its measure relative to � we compute ��� � 	
� �	� ;
but we should be able to find a similar measure between the subblade � , and some
subblade of � , which is ‘ � with

	
taken out’. This can be used to define a new

product, through:

��� ��	
� �
� � �
��� 	 � � � ��� ��
 ����� � (7)

The blade
	 � � is the inner product of

	
and � . Its grade is the difference of the

grades of � and
	

(since it should equal the grade of � in the definition). The
inner product can be interpreted more directly as

	 � � is the blade representing the largest subspace which is con-
tained in the subspace � and which is perpendicular to the subspace	

; it is linear in
	

and � ; it coincides with the usual inner product� � � of � � when computed for vectors
�

and � .

The above determines the inner product uniquely2 . It turns out not to be sym-
metrical (as one would expect since the definition is asymmetrical) and also not
associative. But we do demand linearity, to make it computable between any two
elements in our linear space (not just blades).

For later use, we just give the rules by which to compute the resulting inner
product for arbitrary blades, omitting their derivation. Then we will do some ex-
amples to convince you that it does what we want it to do. In the following � ,

�
are scalars, � and

�
vectors and � ,

	
, � blades of arbitrary order. We give the

rules in a slightly redundant form, for convenience in evaluating expressions.

scalars � � ��� � � � (8)
2The resulting inner product differs slightly from the inner product commonly used in the geo-

metric algebra literature. Our inner product has a cleaner geometric semantics, and more compact
mathematical properties, and that makes it better suited to computer science. It is sometimes called
the contraction, and denoted as ����� rather than ����� . The two inner products can be expressed
in terms of each other, so this is not a severely divisive issue. They ‘algebraify’ the same geometric
concepts, in just slightly different ways.
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�
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Figure 3: The definition of the inner product of blades XXX where referred?.

vector and scalar � � ���	�
(9)

scalar and vector � �G��� � � �
(10)

vectors � ��� is the usual inner product in � � (11)

vector and blade � � � � ��	
� � � � ��� ����	 �
� � � � � 	 � (12)

blades ��� ��	
� � � � � � � 	 � � � (13)

distributivity 1 � � � 	 � � � � � � 	 � � � � (14)

distributivity 2 ��� � 	
� � � � � � � � 	�� � (15)

It should be emphasized that the inner product is not associative. For instance,
� � � � � � � � �

since the second argument is a scalar; but � � �2� � � � � � � (with� � � � � ) is a vector. Neither is the inner product symmetrical, as the scalar/vector
rules show.

3.3 Perpendicularity and duality

Having the inner product expands our capabilities in geometric computations. It
enables manipulation of expressions involving ‘spanning’ to being about ‘perpen-
dicularity’ and vice versa. Such ‘dual’ formulations turn out to be very convenient.
We briefly develop intuition and basic conversion expressions for these manipula-
tions.

� perpendicularity
We define the concept of perpendicularity through the inner product:

� perpendicular to � ��� � � � �	� �
It is then easy to prove that, for general blades � , the construction � ��	

is
indeed perpendicular to � , as we suggested in the previous section. For any
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vector � satisfies � � ��� � 	
� � � � � � � ��	 . But if � is in � it must be linearly
dependent on the spanning vectors, so � � � � �

. Therefore � � ��� � 	 � � �

for any � in � . So any vector in � is perpendicular to � � 	
.

� orthogonal complement and dual
If we take the inner product of a blade relative to the volume element of the
space it resides in (i.e. relative to the pseudoscalar of the space), we get the
whole subspace perpendicular to it. This is how duality sits in geometric
algebra: it is simply taking an orthogonal complement. A good example
in a 3-dimensional Euclidean space is the dual of a 2-blade (or bivector).
Using an orthonormal basis ����� � 
���7� and the corresponding bivector basis,
we write:

	 ��" ��� � � � 
 �
" ��� 


� �
��� "

 � 


� ��� . We take the dual relative
to the space with volume element

�

 � ��� � � � � � 
 (i.e. the ‘right-handed

volume’ formed by using a right-handed basis). Any scalar multiple would
do, but it turns out that the best definition is to use the reverse of

�

 to define

the dual (since that generalizes to higher dimensions; here

 �


�
� � 
 ). The

subspace of
�

 dual to

	
is then:

	 � 
 �


� � " ����� � � 
 �

" ��� 

� �
��� "


 ���
� � � � � � � 


� ��� � �
� �� " �?�
��� " �$��� � "

 � 
 � (16)

This is a vector, and we recognize it (in this Euclidean space) as the normal
vector to the planar subspace represented by

	
. So we have normal vectors

in geometric algebra as the duals of 2-blades, if we would want them (but
we will see in Section 7.3 why we prefer the direct representation of a pla-
nar subspace by a 2-blade rather than the indirect representation by normal
vectors).

If it is clear from context relative to which pseudoscalar
�

the dual is taken,
we will use the convenient shorthand

	��
for

	 � 
 �
.

� duality relationships
Going over to a dual representation involves translating formulas given in
terms of spanning to formulas using perpendicularity. An example is the
specification of a plane in 3-space given its 2-blade

	
. On the one hand,

all vectors in the plane satisfy �
� 	 � �

(zero volume spanned with the
2-blade); but dually they satisfy �

� 	 � � �
(perpendicular to the normal

vector). This is an example of a more general duality relationship between
blades, which we state without proof. Let � ,

	
and

�
be blades, with �

contained in
�

(this is essential). Then:

��� � 	
� � � � � � � 	 � � �
if ��� � � (17)
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Remember also the universally valid eq.(13)

��� ��	
� � � � � � � 	�� � � � (18)

Together, these equations allow the change to a ‘dual perspective’ converting
spanning to orthogonality and vice versa, permitting more flexible interpre-
tation of equations.

Let us use these to verify the motivating example above in full detail. In a
3-dimensional space with pseudoscalar

�

 , the equation �

� 	 � �
(meaning

that � is in the 2-dimensional subspace determined by
	

) can be dualized to� � � �
� 	
� � 
 �



�

�
� � 	 � 
 �



�
. This characterizes the vectors in the

	
-

plane through its normal vector � � 	 � 
 �


� 	 �

. It is the familiar ‘normal
equation’ of the plane, and identical to the common way to represent a plane
by its normal vector � .

In general, we will say that a blade
	

represents a subspace
�

of vectors �

if
��� � ��� �

��	 � �
(19)

and that a blade
	 �

dually represents the subspace
�

if

��� � ��� �
� 	 � � �

� (20)

Switching between the two standpoints is done by the duality relations above.

� the cross product
Classical computations with vectors in 3-space often use the cross product,
which produces from two vectors � and

�
a new vector ���� � � � � perpendicular

to both (by the right-hand rule), proportional to the area they span. We can
make this in geometric algebra as the dual of the 2-blade spanned by the
vectors:

����� � � � � � � � � � � 
 �

 � (21)

This shows a number of things explicitly which one always needs to remem-
ber about the cross product: there is a convention involved on handedness
(this is coded in the sign of

�

 ); there are metric aspects since it is perpen-

dicular to a plane (this is coded in the usage of the inner product ‘
�
’); and

the construction really only works in three dimensions, since only then is the
dual of a 2-blade a vector (this is coded in the 3-gradedness of

�

 ). The vec-

tor relationship � � � does not depend on any of these embedding properties,
yet characterizes the � �4� � � -plane just as well.
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You may verify that computing eq.(21) explicitly using eq.(1) and eq.(16)
indeed retrieves the usual expression:

���� � � � � � � � � " 
 �
�


" � � �
��� � � 


" � � � � " 

� � � � � � � " � � � � " � � � 
 (22)

In geometric algebra, we have the possibility of replacing the cross product
by more elementary constructions. In Section 7.3 we discuss the advantages
of doing so.

4 Intersecting subspaces

So far, we can span subspaces and consider their containment and orthogonality.
Geometric algebra also contains operations to determine the union and intersection
of subspaces. These are the �����! and � ����� operations. Several notations exist for
these in literature, causing some confusion. For this paper, we will simply use the
set notations � and � to make the formulas more easily readable.3

4.1 Union of subspaces

The � ���  of two subspaces is their smallest superspace, i.e. the smallest space
containing them both. Representing the spaces by blades � and

	
, the � ���! is

denoted ���
	

. If the subspaces of � and
	

are disjoint, their � ���  is obviously
proportional to � � 	

. But a problem is that if � and
	

are not disjoint (which is
precisely the case we are interested in), then ���

	
contains an unknown scaling

factor which is fundamentally unresolvable due to the reshapable nature of the
blades discussed in Section 2.3 (see Figure 4; this ambiguity was also observed
by [13][Stolfi]). Fortunately, it appears that in all geometrically relevant entities
which we compute this scalar ambiguity cancels.

The �����! is a more complicated product of subspaces than the outer product
and inner product; we can give no simple formula for the grade of the result (like
eq.(3)), and it cannot be characterized by a list of algebraic computation rules.
Although computation of the � ���! may appear to require some optimization process,
finding the smallest superspace can actually be done in virtually constant time.

3We should also say that there are some issues currently being resolved to make �����	� and 
���
��
a properly embedded part of geometric algebra since they produces blades modulo a multiplicative
scaling factor rather than actual blades. Most literature now uses them only in projective geometry,
in which there is no problem.
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Figure 4: The ambiguity of scale for � ������� and �����! �� of two blades � and
	

.
Both figures are examples of acceptable solutions.

4.2 Intersection of subspaces

The ������� of two subspaces � and
	

is their largest common subspace. If this is
the blade � , then � can be factorized as � � ��� � � and

	
as
	 �

�
� 	

� ,
and their �����! is a multiple of � � � � �
	

�
� � �
	

�
� � � � 	 . This gives the

relationship between � ����� and � ���! .
Given the � ���! �� � � �

	
of � and

	
, we can compute their � ����� by the

property that its dual (with respect to the � ���! ) is the outer product of their duals
(this is a not-so-obvious consequence of the required ‘containment in both’). In
formula, this is:

��� �
	 � � 


�
� � 	 � 


�
� � ��� � 


�
� ��
 ��� �

	
� � � 	 � � � �

with the dual taken with respect to the � ���  	� . (The somewhat strange order is
a consequence of the factorization chosen above, and it corresponds to [13] for
vectors). This leads to a formula for the � ����� of � and

	
relative to the chosen

� ���  (use eq.(18)) :
� �

	 � � 	 � 

�
� � � � (23)

Let us do an example: the intersection of two planes represented by the 2-blades
� � �� � �
�!�>��� � � � ���4�>� 


�
and

	 � �
� � ��� . Note that we have normalized them
(this is not necessary, but convenient for a point we want to make later). These are
planes in general position in 3-dimensional space, so their � ���  is proportional to�

 . It makes sense to take �

� �

 . This gives for the � ����� :

� �
	 � �� � � ��� � � � � � � � 


� ��� � �
� � � � � � �
��� � � � � � ��� � � 

� �

� �� � 

� � � � � � � � � � � 


�
�

� �� � � � � � � � � � �

	
� ����� � �


	
�

(24)

(the last step expresses the result in normalized form). Figure 5 shows the answer;
as in [13] the sign of � �

	
is the right-hand rule applied to the turn required to

make � coincide with
	

, in the correct orientation.
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�
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� �
	

Figure 5: An example of the � �����

Classically, one computes the intersection of two planes in 3-space by first
converting them to normal vectors, and then taking the cross product. We can see
that this gives the same answer in this non-degenerate case in 3-space, using our
previous equations eq.(17), eq.(18), and noting that


 �


�
� � 
 :

��� � 
 �


�
� � � � � � 	 � 
 �



� � � ��� � 
 �



� � � 	 � 
 �



��� � 
 �


� � � 	 � 
 �


� � ��� � 
 �



��� � �


� � 	 � 
 �


� ��� ��� � 
 �



� � �



�

� � 	 � 
 �


� ��� � � � 
 � 
 � � 
 ���� � 	 � 
 �


� � � �

So the classical result is a special case of eq.(23), but that formula is much more
general: it applies to the intersection of subspaces of any grade, within a space of
any dimension. With it, we begin to see some of the potential power of geometric
algebra.

When the � ����� is a scalar, the two subspaces intersect in the point at the origin.
This is in agreement with our geometrical interpretation in Section 2.7 of scalars
as the weighted point at the origin. Scalars are geometrical objects, too!

The norm of the � ����� gives an impression of the ‘strength’ of the intersection.
Between normalized subspaces in Euclidean space, the magnitude of the � ����� is
the sine of the angle between them. From numerical analysis, this is a well-known
measure for the ‘distance’ between subspaces in terms of their orthogonality: it is
1 if the spaces are orthogonal, and decays gracefully to 0 as the spaces get more
parallel, before changing sign. This numerical significance is very useful in appli-
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�

�

��

Figure 6: Ratios of vectors

cations.

5 Ratios of subspaces

With subspaces as basic elements of computation, we would really like to com-
plete our algebra by the ability to solve equations in similarity problems such as
indicated in Figure 6:

Given two vectors � and
�

, and a third vector � , determine � so
that � is to � as

�
is to � , i.e. solve (in a symbolic notation which we

will soon make exact):
�

�
� �

� (25)

Such equations require a division of subspaces (here vectors), and so, really, an
invertible product of subspaces. This geometric product is at the core of geometric
algebra, and it is a rather amazing construction, at first sight.

5.1 The geometric product

For vectors, the geometric product is defined in terms of the inner and outer product
as:

� � ��� �I� � � � �
(26)

So the geometric product of two vectors is an element of mixed grade: it has a
scalar (0-blade) part � � � and a 2-blade part � �F�

. It is therefore not a blade;
rather, it is an operator on blades (as we will soon show). Changing the order of �
and

�
gives: � � � � � �*� � � � � � ��� � � � �

The geometric product of two vectors is therefore neither fully symmetric (or
rather: commutative), nor fully anti-symmetric.
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� � � fixed

��� � fixed

Figure 7: Invertibility of the geometric products.

A simple drawing may convince you that the geometric product is indeed in-
vertible, whereas the inner and outer product separately are not. In Figure 7, we
have a given vector � . We denote the set of vectors � with the same value of the
inner product �

� � – this is a plane perpendicular to � . The set of all vectors with
the same value of the outer product �

� � is also denoted – this is the line of all
points which span the same directed area with � . Neither of these sets is a sin-
gleton (in spaces of more than 1 dimension), so the inner and outer products are
not fully invertible. The geometric product provides both the plane and the line,
and therefore permits determining their unique intersection � , as illustrated in the
figure. Therefore it is invertible.

Note that the geometric product is sensitive to the relative directions of the
vectors: for parallel vectors � and

�
, the outer product contribution is zero, and

� � is a scalar and commutative in its factors; for perpendicular vectors, � � is a
2-blade, and anti-commutative. In general, if the angle between � and

�
is
�

in
their common plane with unit 2-blade

�
, we can write (in a Euclidean space):

� � �
�
�
��� � � � ����� � � � �
	��
� � (27)

We will see below that
� � � � � , so this is very reminiscent of complex numbers.

More about that later, we mention it here to make the construction of the different
grade elements in eq.(26) somewhat less outrageous than it may appear at first.

Eq.(26) defines the geometric product only for vectors. For arbitrary elements
of our algebra it is defined using linearity and associativity, and making it coincide
with the usual scalar product in the vector space, as the notation already suggests.
That gives the following axioms (where � and

�
are scalars, � is a vector,

�
is a
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general element of the algebra):

scalars � � and � � have their usual meaning in ��� (28)

scalars commute � ����� � (29)

vectors �
� �

�
��� � �

� �
(30)

associativity
� � � 
 � � � � �
��
 (31)

distributivity 1
� � � � 
 � ��� � � � 
 (32)

distributivity 2 � � � �
��
���� 
 � ��
 (33)

(One can avoid the reference to the inner and outer product through replacing
eq.(30) by ‘the square of a vector � must be equal to the scalar

� � � � �
�
’, with�

the bilinear form of the vector space. Then one can re-introduce inner and outer
product through the commutative properties of the geometric product:

� ��� � �� � � � � � � � ����� � � ��� �� � � � � � � � � (34)

This is mathematically cleaner, but too indirect for our purpose here.)
It may not be obvious that these equations give enough information to compute

the geometric product of arbitrary elements. Rather than show this abstractly, let us
show by example how the rules can be used to develop the geometric algebra of 3-
dimensional Euclidean space. We introduce, for convenience only, an orthonormal
basis ��� � � 
���7� . Since this implies that ��� � ��� ��� ��� , we get the commutation rules:

� � ��� ��� �%� � � � if 	�
�
�
� if 	 �
� (35)

In fact, the former is equal to � � � ��� , whereas the latter equals ��� � � � . Considering
the unit 2-blade � � � � � , we find for its square:

� � � � ��� � � � � � � � ��� � � � � � ��� � � � � �2��� � � � ����� �� � �2���4� ����� � �%� ��� ��������� � � � (36)

So a unit 2-blade squares to � � (we just computed for �4� � ��� for convenience,
but there is nothing exceptional about that particular unit 2-blade, since the basis
was arbitrary). Continued application of eq.(35) gives the full multiplication for
all basis elements in the Clifford algebra of 3-dimensional space. The resulting
multiplication table is given in Figure 8. Arbitrary elements are expressible as a
linear combination of these basis elements, so this table determines the full algebra.
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���


 � ��� � � � 
 �
� � � 
 � � � 
 ��� � 

� � ��� � � � 
 �
� � � 
 � � � 
 ��� � 
� � � � � � � � � � 
 � � � �%� 
 � � � 
 � � 
��� ��� �%�
� � � ��� 
 �%��� �
� � 
 � 
 � 
 �� 
 � 
 � 
 � �%� � 
 � ��� � 
 �
� �%� � �
� �
�
� � �
� � �%� � �
� �
� � 
 � � ��� 
 �%� 
 � �%� 
� 
 � � 
 � � 
 �
� � 
 �%�
� �%� � 
 � � �
� � �%� �
� � 
 � � 
 ��� � 
 � � 
 � � � 
 � �%��� � � � �%�
�
��� � 
 ��� � 
 � � 
 � 
 � ��� � �%� 
 �%� � �%�
� � �

Figure 8: The multiplication table of the geometric algebra of 3-dimensional Eu-
clidean space, on an orthonormal basis. Shorthand: � � � � � � � � � , etcetera.

5.2 Invertibility of the geometric product

The geometric product is invertible, so ‘dividing by a vector’ has a unique meaning.
We will usually do this through ‘multiplication by the inverse of the vector’. Since
multiplication is not necessarily commutative, we have to be a bit careful: there is
a ‘left division’ and a ‘right division’.

As you may verify, the unique inverse of a vector � is:

� � � � �
� � �

� ��
�
�
�

since that is the unique element that satisfies: � � � � � � � �%� � � . Similarly, a
blade � (of which the norm should not be zero) has the inverse

� � � �


�

� � 
� � 

��
�
�
�

(the reverse is due to the definition of the norm in eq.(6)).

5.3 Projection of subspaces

The availability of an inverse gives us an interesting of way of decomposing a
vector � relative to a given blade � using the geometric product:

�
� � � � � � � � � � �

� � � � � � � � �
� � � � � � (37)

The first term is a blade fully inside � : it is the projection of � onto � . The second
term is a vector perpendicular to � , sometimes called the rejection of � by � . The
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Figure 9: (a) Projection and rejection of � relative to � . (b) Reflection of � in � .

projection of a blade � onto a blade � is given by the extension of the above, as:

projection of � onto � : � �� ��� � � � � � �
Again geometric algebra has allowed a straightforward extension to arbitrary di-
mensions of subspaces, without additional computational complexity.

5.4 Reflection of subspaces

The reflection of a vector � relative to a fixed vector � can be constructed from
the decomposition of eq.(37) (used for a vector � ), by changing the sign of the
rejection (see Figure 9b). This can be rewritten in terms of the geometric product:

� �
� � � � � � � � �

� � � � � � � � � � � � � � �
� � � � � � � � � � �

So the reflection of � in � is the expression � � � � � , see Figure 9b; the reflection
in a plane perpendicular to � is then � � � � � � ,

We can extend this formula to the reflection of a blade � relative to the vector
� , this is simply:

reflection in vector � : � �� ��� � � � �
and even to the reflection of a blade � in a � -blade � , which turns out to be:

general reflection: � �� � � � � � 	 ��� � � � �
Note that these formulas permit you to do reflections of subspaces without first
decomposing them in constituent vectors. It gives the possibility of reflection a
polyhedral object by directly using a facet representation, rather than acting on
individual vertices.
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5.5 Angles as geometrical objects

We have found in eq.(36) that any unit 2-blade
�

in a Euclidean space satisfies� � � � � , so this is also true for the unit 2-blade occurring in eq.(27). Therefore,
using the usual definition of the exponential as a converging series of terms, we are
actually permitted to write the geometric product in an exponential form:

� � �
�
�
��� � � � ����� � � � �
	��
� � � � � ��� � ��� ��� (38)

with
�

the unit 2-blade containing � and
�

, oriented from � to
�

. This exponential
form will be very convenient when we do rotations. Note that all elements occur-
ring in this equation have a straightforward geometrical interpretation, we are not
doing complex numbers here! (Really, we aren’t:

�
is not a complex scalar, since

then it would have to commute with all elements of the algebra by eq.(29), but it
instead satisfies � � � � � � for vectors � in the

�
-plane.)

The combination
� �

is a full indication of the angle between the two vectors: it
denotes not only the magnitude, but also the plane in which the angle is measured,
and even the orientation of the angle. If you ask for the scalar magnitude of the
geometrical quantity

� �
in the plane � � (the plane ‘from

�
to � ’ rather than ‘from

� to
�

’), it is �
�

; so the scalar value of the angle automatically gets the right
sign. The fact that the angle as expressed by

� �
is now a geometrical quantity

independent of the convention used in its definition removes a major headache
from many geometrical computations involving angles. We call this true geometric
quantity the bivector angle (it is just a 2-blade, of course, not a new kind of element
– but we use it as an angle, hence the name).

5.6 Rotations in the plane

Using the inverse of a vector, we can now solve the motivating problem of eq.(25),
to find a vector � that is to � as

�
is to � . Denoting the 2-blade of the � � �E� �

-plane
by
�
, we obtain:

� � � � ��� � � �
so that

�
� � � � � � � � �

� � ��
�
� � � ��� � (39)

Here
� �

is the angle in the
�

plane from � to
�

, as in eq.(38), so � � � is the angle
from

�
to � . If we happen to have

�
�
� � � � �

, we get �
� � � ��� � ; apparently we

should interpret ‘pre-multiplying by

� � ��� ’ as a rotation operator in the
�
-plane.

The full expression of eq.(39) denotes a rotation/dilation in the
�
-plane.
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�����

�

� ���	� � ��� �
����� ���

�
-plane

Figure 10: Coordinate-free specification of rotation.

Let us write this out, to get familiar with the geometric algebra way of looking
at rotations: � � ��� � � � ����� � � � � �
	��
� � � ����� � � � � � 	��
�

What is � � ? Introduce orthonormal coordinates ���4������� � in the
�
-plane, with � �

along � , so that � � � � � . Then
� � �
� � � � � ���
� � . Therefore � � � � �
�
�
����� �

� ��� : it is � turned over a right angle, following the orientation of the 2-blade
�

(here anti-clockwise). So � ����� � � � � �
	��
� is ‘a bit of � plus a bit of its anti-
clockwise perpendicular’ – and those amounts are precisely right to make it equal
to the rotation by

�
, see Figure 10.

If you use a classical rotation matrix in 2 dimensions, it does precisely this con-
struction, but in a coordinate system that is adapted to an arbitrary basis ��������� � � ,
rather than to � . That is why you then need 4 coefficients, to describe how each
of those 2 basis vectors turns. Geometric algebra is coordinate-free in this sense:
orthogonal directions can be made from the vectors for which you need them in
a coordinate-free manner. Then a specification of the rotation requires only 2
trigonometric functions, just for the scaling of those 2 components.

5.7 Rotations in 3 dimensions

Two subsequent reflections in lines which make an angle of
� �
	 in a plane with

unit 2-blade
�

constitute a rotation over
�

in the
�
-plane. In 2-dimensional space,

this is obvious, but it also works in 3-dimensional space, see Figure 11 (and even in
� -dimensional space). It gives us the way to express general rotations in geometric
algebra.

Two successive reflections of a vector � in vectors 
 and � give

� ��
 � 
 � � � � � � � ��
�
� 
�


�

�

�


� ��
�
� � � � ����� � �

� ����� �
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�

� �
	




�

�

�

� � ����� � �

� ����� � � � � � ��
 � � � 
 � �


 � � � 


� 
 �



�



Figure 11: A rotation as 2 reflections in vectors 
 and � , making an angle of
� � � 	 .

where we used the exponential notation for the geometric product of two unit vec-
tors (

�
is the unit 2-blade from 
 to � ). The expression for the rotation is therefore

directly given by the bivector angle, i.e. by angle and rotation plane. An operator� � ����� � , used in this way, is called a rotor. Writing out this expression in terms of
the perpendicular component ��� (rejection) and the parallel component ��� (pro-
jection) of � relative to the

�
plane gives

rotation over
� �

: � ��
� � ����� � �

� ����� � � ��� �
� � ��� � � (40)

(this is a good exercise, it requires
�

��� � ��� � and
�

� � � � � � � ; why do these
hold?). So the perpendicular component to the rotation plane is unchanged (as it
should!), and the parallel component becomes pre-multiplied by

� � ��� . We have
seen in eq.(39) that this is a rotation in the

�
-plane. (In fact, we could have defined

the higher dimensional rotation by the right hand side of eq.(40) and then derived
the left hand side.)
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5.8 Combining rotations

Two successive rotations �A� and ��� are equivalent to a single new rotation � of
which the rotor � is the geometric product of the rotors ��� and ��� , since

��� � � � � � �� � � �� � � ��� �*� � � � ��� �*� � � � � � � � � � �
This applies in 3-dimensional space as well as in 2-dimensional space. Therefore
the combination of rotations is a simple consequence of the definition of the geo-
metric product on rotors, i.e. elements of the form

� � ����� � � ����� � �
	 � � �
	�� � � 	 ,

with
� � � � � . (We could allow a scalar factor in the rotor, since the inverse divides

it out; yet it is common to restrict rotor to be normalized to unity – then one can
replace � � � by



� , defining the rotation by � �



� . Reversion is a simpler (cheaper)

operation than inversion, though the normalization may add some additional com-
putational cost.)

Let’s see how it works in 3-space. In 3 dimensions, we are used to specifying
rotations by a rotation axis � rather than by a rotation plane

�
. The relationship

between axis and plane is given by duality: � � � � 
 �


�
� � � 
 (check that this

indeed gives the correct orientation). Given the axis � , we therefore find the plane
as the 2-blade

� � �%� � � �
 � � � 

� �


 � . A rotation over an angle
�

around an
axis with unit vector � is therefore represented by the rotor

� � ����� ��� � .
To compose, say, a rotation � � around the � � axis of � � 	 with a subsequent

rotation � � over the � � axis over � � 	 , we write out their rotors:

�*� �
� � �������
	 � � � ���F� � 



	
�����

��� �
� � �������
	 � � � � �F� 
 �


	
The total rotor is their product, and we rewrite it back to the exponential form to
find the axis:

� � � � �*� � �� � � �F��� 

� � � �F� 
 �

� � �� � ���F� � 
 �F� 
 � � �
� � �
� �� � ��


 � �


���7� � � � � 

 � � � � � � ��	 � 


Therefore the total rotation is over the axis � � � �4� � � �D� � 

��� 
 �

, over the angle
	�� ��� . But of course you do not need to decompose the resulting rotor into those
geometrical constituents: you can apply it immediately to a vector � as � � � � � ,
or even to an arbitrary blade through the formula:

general rotation: � �� � � � � �
This enables you to rotate a plane in one operation, for instance:

� � �
� � � � � � � � � �� � ���F� � 
 �F� 
 � �B��� � � �
� � � � � � � 
 � � 
 ��� ��� � � � ��� 

No need to decompose the plane into its spanning vectors first!
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5.9 Quaternions: based on bivectors

You may have recognized the example above as strongly similar to quaternion
computations. Quaternions are indeed part of geometric algebra, in the following
straightforward manner.

Choose an orthonormal basis ����� � 
���7� . Construct out of that a bivector basis
with elements � � ��� �
� � � � � � ���
� � � and cyclic. Note that these elements satisfy:
� � � � � � �� 


� � �
 �
�
� � , and �
� �4� � 


� ��� 
 (and cyclic) and also � � � � � 
 � 
 �
� � .

In fact, setting 	 � � � 
 ,
� � �%� 
 � and � � �
� � , we find 	 � �
� � � � � � 	 � � � � �

and
� 	 � � and cyclic. Algebraically these objects are the quaternions obeying the

quaternion product, commonly interpreted as some kind of ‘4-D complex number
system’. There is nothing ‘complex’ about quaternions; but they are not really vec-
tors either (as some still think) – they are just real 2-blades in 3-space, denoting
elementary rotation planes, and multiplying through the geometric product. Visu-
alizing quaternions is therefore straightforward: each is just a rotation plane with
a rotation angle, and the ‘bivector angle’ concept represents that well (the corre-
sponding quaternion is simply its exponential, elevating the bivector angle to a
rotation operator).

5.10 Constructing rotors

For a 2-dimensional rotation, if you know for certain that a vector � has been
rotated to become a vector � (which therefore necessarily has the same norm) by a
rotation in the � � � -plane, it is easy to find a rotor that does that:

�
� � ��� �

(if you want the unit rotor, you need to normalize this). For a 3-dimensional ro-
tation, if you know an orthonormal frame ��� � � 
���7� which has rotated to the frame
��� � � 
���7� , then a rotor doing that is:

�
� � ���?���
����� �$� �C��� 
 � 


(which needs to be normalized if you want a unit rotor). This formula can be
generalized simply to non-orthonormal frames, see [11]. Warning: the formulas
do not work for rotations over � (there is then no unique rotation plane!) – but are
very useful elsewhere.

6 Differentiation

Geometric algebra also has a much extended operation of differentiation, which
contains the classical vector calculus, and much more. It is possible to differentiate
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with respect to a scalar or a vector, as before, but now also with respect to � -
blades. This enables efficient encoding of differential geometry, in a coordinate-
free manner, and gives an alternative look at differential shape descriptors like the
‘second fundamental form’ (it becomes an immediate indication of how the tangent
plane changes when we slide along the surface).

Somebody should rewrite classical differential geometry texts into geometric
algebra; but this has not been done yet and it would lead too far to do so in this
introductory paper. Let us just briefly show the scalar differentiation of a rotor, to
demonstrate how the commutation rules of geometric algebra naturally group to a
well-known classical result, which is then automatically extended beyond vectors.

So, suppose we have a rotor �
� � � ����� � , and use it to produce a rotated version

�
�
� ���



� of some constant blade ��� . Scalar differentiation with respect to

time gives (using chain rule and commutation rules):
�
��� �

� �
��� �

� � ����� � ��� � ����� � ��
� ��

�
��� � � � � �

� � ����� � ��� � ����� � � � �� �
� � ����� � ��� � ����� � � ���� � � � �� �� ���

�
��� � � � � � �

��� � � � � � ��
�
� �
��� � � � �

using the commutator product
�

defined in geometric algebra as the shorthand� � � � �� � � � �
�����

; this product often crops up in computations with Lie
groups such as the rotations. This simple expression which results assumes a more
familiar form when � is a vector � in 3-space, the rotation plane is fixed so that�
���
� � �

, and we introduce a scalar angular velocity � � �
���
�

. It is then common
practice to introduce the vector dual to the plane as the angular velocity vector 	 	 	 	 ,
so 	 	 	 	 �
�

� � 
 �


�
�
� � �


 . We then obtain:
�
��� �

�
�
� �
��� � � � � � �

� ��	 	 	 	 � 

� � � �

�
	 	 	 	
� �


�
	 	 	 	 � � � � � �

where � � � � � is the vector cross product. As before when we treated the ������� and other
operations, we find that an equally simple geometric algebra expression is much
more general; here it describes the differential rotation of � -dimensional subspaces
in � -dimensional space, rather than merely of vectors in 3-D.

Similar generalizations result for differentiation relative to blades; the inter-
ested reader is referred to the tutorial of [2], which introduces these differentiations
using examples from physics.

7 Linear algebra

In the classical ways of using vector spaces, linear algebra is an important tool.
In geometric algebra, this remains true: linear transformations are of interest in



Geometric Algebra: a Computational Framework (DRAFT) 29

their own right, or as first order approximations to more complicated mappings.
Indeed, linear algebra is an integral part of geometric algebra, and acquires much
extended coordinate-free methods through this inclusion. We show some of the
basic principles; much more may be found in [2] or [10].

7.1 Outermorphisms: spanning is linear

When vectors are transformed by a linear transformation on the vector space, the
blades they span can be viewed to transform as well, simply by the rule: ‘the
transform of a span of vectors is the span of the transformed vectors’. This means
that a linear transformation

���
� � � � � on a vector space has a natural extension

to the whole geometric algebra of that vector space, as an outermorphism, i.e. a
mapping that preserves the outer product structure:

� � � � � � � ������� � ��	 � � � � � � ��� � � � � ��� ����� � � � �
	 � �
Note that this is grade-preserving: a � -blade transforms to a � -blade. To this we
have to add what the extension does to scalars, which is simply:

� � � � � � .
This outermorphism definition has immediate consequences. Apply it to a

pseudoscalar
�
� , which is an � -blade: it must produce another � -blade. But

the linear space of � -blades in � -dimensional vector space is 1-dimensional, so
this must again be a multiple of

�
� . That multiple is precisely the determinant of

�

in � -dimensional space: ����� � � � � � � � �
� � � �
�
�

The determinant is thus simply the change of hypervolume under
�
. This is nothing

new, but it is satisfying that all the usual properties of the determinant, including its
expression in terms of coordinates, follow immediately from this straightforward,
coordinate-free definition.

7.2 Linear transformation of the inner product

The transformation rule for the inner product now follows automatically from the
definition through eq.(7), and is found to be rather more involved:

� � � ���
� � � � � � ��� � � � � � �
where

�
is the adjoint of

�
, defined by

� � � � � � ��� � � � �
� for all
�

and
�
�

(In terms of matrices on an orthonormal basis,
�

is the mapping represented by the
transpose of the matrix representing

�
.)
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7.3 No normal vectors or cross products!

Since the inner product transformation under a linear mapping is so involved, one
should steer clear of any constructions that involve the inner product, especially in
the characterization of basic properties of one’s objects. Therefore the practice of
characterizing a plane by its normal vector – which contains the inner product in
its duality, see Section 3.3 – should be avoided. Under linear transformations, the
normal vector of a transformed plane is not the transform of the normal vector of
the plane! (this is a well known fact, but always a shock to novices). The normal
vector is in fact a cross product of vectors, which (as you may verify from eq.(21)
and the above) transforms as:

� � ���� � � � � � � � � � � � � � � � � � � � � � � ��� ����� � � �
and that is usually not equal to

� � � � � � � � � � � � � . It is therefore much better to char-
acterize the plane by a 2-blade, now that we can. The 2-blade of the transformed
plane is the transform of the 2-blade of the plane, since linear transformations are
outermorphisms preserving the 2-blade construction. Especially when the planes
are tangent planes constructed by differentiation, 2-blades are appropriate: under
any transformation � , the construction of the tangent plane is only dependent on
the first order linear approximation mapping

�
of � . Therefore a tangent plane rep-

resented as a 2-blade transforms simply under any transformation (and the same
applies of course to tangent � -blades in higher dimensions). Using blades for those
tangent spaces should enormously simplify the treatment of object through differ-
ential geometry, especially in the context of affine transformations – but this has
not yet been done.

8 All you need is blades: models of geometries

So far we have been treating only homogeneous subspaces of the vector spaces,
i.e. subspaces containing the origin. We have spanned them, projected them, and
rotated them, but we have not moved them out of the origin to make more interest-
ing geometrical structures such as lines floating in space.

There is a very nice way of making such basic primitives in geometric alge-
bra. At first it looks like a straightforward embedding of the classical ideas behind
‘homogeneous coordinates’, but it rapidly becomes much more powerful than that.
It creates an algebra of points (rather than vectors). We present three models of
Euclidean space, all useful to computer graphics, and show how the geometric al-
gebra of those models implements totally different semantics using the same basic
products (but in different spaces). This goes much beyond resolving the issues
raised in the classical papers by Goldman [6, 7].
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8.1 The vector space model

The most straightforward model of Euclidean space represents its points by the
translation vectors required to get there. We call those position vectors. This rep-
resentation strongly depends on the location of the origin. It is well known [6] that
this easily leads to bad representations and software which depend heavily on the
chosen origin. It is inappropriate to take the position vectors � and

�
as ‘being’

the points
�

and
�

, and then form new points by addition of their vectors. The
construction � � �

cannot represent a geometrical point, for its value changes as
the origin changes, and no geometrically relevant objects should depend on that.

Still, the vector space model of a Euclidean space is appropriate for translation
vectors (the null translation is special: it is the identity operation) and for tangent
planes to a manifold (again, the origin is special since it is where the tangent space
is attached to the manifold). For those, � � �

has a clear meaning: it is the resultant
translation or resultant velocity, of a point. Beyond these applications, one has to
be careful with the vector space model.

The products between vectors are just as much part of the model as the em-
bedding of the points themselves (this is a point which Goldman [6, 7] neglects
somewhat in his discussion of representations). In the vector space model, they
simply have the meaning we have used throughout this paper: the outer product
constructs the higher-dimensional proper subspaces; the inner product constructs
the orthogonal complement of subspaces; and the geometric product gives us the
rotation/dilation operator between subspaces. Elementary combinations of these
give us projection and reflection. Note that all these operations are origin-centered
in this model: rotations are around an axis through the origin, reflections are in
planes through the origin, etcetera. It is simple to shift them out of the origin of
course, but algebraically, that is a ‘hack’ – it would be much more tidy if we could
find a representation in which those operations are all elementary relationships be-
tween blades (and we will). Even an basic concept like the Euclidean distance
between two points � and

�
is a fairly involved expression – we have to form� ��� ��� � � ��� ��� � to obtain this geometric invariant. It would be much nicer if

this elementary concept were one of the elementary products.

The vector space model, then, contains a lot of the basic elements to do Eu-
clidean geometry, especially when we consider its full geometric algebra of higher
dimensional subspaces. But we can do better, tidying up the algebra by embedding
Euclidean geometry of � � in a space of more than � dimensions and using the
geometric algebra of that space to describe the Euclidean objects and operators of
interest.
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8.2 The homogeneous model

We can get rid of the special nature of the origin, by (paradoxically!) introducing a
vector representing it. To represent an � -dimensional Euclidean space � � in this
way, we must introduce an extra dimension and obtain an � � � � � -dimensional
representation space. This is the familiar homogeneous model or affine model of
the vector space.

8.2.1 Points as vectors

Let the unit vector for the extra dimension be denoted by

�
� . This vector must be

perpendicular to all regular vectors in the Euclidean space � � , so

�
�
�

�
� �

for all
� � � � . We let

�
� denote ‘the point at the origin’. A point at any other location �

is made by translation of the point at the origin over � . This is done by adding �
to

�
� . This construction therefore gives the representation of the point at location

� as the vector � in � � � � � -dimensional space:

�
� �

� � �
This is no more than the usual homogeneous coordinates; we have extended the
� -dimensional vector by an

�
� -coordinate to make an � �B�H� � -dimensional vector

capable of representing a point in � -dimensional space.
We will denote vectors in the � -dimensional Euclidean space in bold, and vec-

tors in the � � � � � -dimensional model in italic. You can visualize this construction
as in Figure 12a (necessarily drawn for �

�
	 ).

8.2.2 Off-set flats as blades

Now let us look at how we can interpret the higher grade elements of the geometric
algebra of this � � �E� � -dimensional space. A vector in � ��� � � -space is apparently
the representation of a point in � � , i.e. a

�
-dimensional affine subspace element.

What does a 2-blade �
���

formed by two vectors � and
�

represent, in other words,
what is the semantics of the outer product in this homogeneous model? We com-
pute

�
��� � �

�
� � � � � �

�
� � � � �

�
�
� � � ��� � � � � �

We recognize the vector � � � , and the area spanned by � and � . Both are elements
which we need to describe an element of the directed line through the points � and�
. The former is the direction vector of the directed line, the latter is an area which

we will call the moment of the line through � and
�
. It denotes the distance to the

origin, for we can rewrite it to a rectangle spanned by the direction � � � � � and
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�
�
� �

�
�

�
�

�
�

(a) (b) (c)

� �� � ��
�

�� �

�

�

�
���

Figure 12: Representing offset subspaces of ��� in � � � -dimensional space.

any vector on the line, such as � or �� ��� � � � or the perpendicular support vector

:

�
�
�
�
�
� � � ��� � � �� ��� � � ��� � � � � � � 
 � � � � � � (41)

where



is defined by

 � � � � � � � � � � and


 � � � � � � � �
. (These equations

can be solved using the geometric product to give:

 � ��� � � � � � � � � � � , a nice

example of the use of division by vectors.)
So the outer product �

� �
can be used to represent a directed line element of

the line �
�
. However, note that �

� �
is not a line segment: neither � nor

�
can be

retrieved from �
� �

. The 2-blade is just a line element of specified direction and
length, somewhere along the line through � and

�
(in that order).

As a blade, we can use �
� �

to give an equation for the whole line: a point �

is on the line through � and
�

if and only if � � � � � � � � �
. Let’s verify that:

� � � � � �
�
�
� ��� � � � �

� � � � � � � � �
�
�
�
� (42)

This is zero if and only if two conditions hold: (1) �
� � � � � � � �

�
�
�

�
� � � � � � , so that �

�
�5� � � � � � � which is indeed the usual line equation;

and (2) �
�
�
�
�
� �

– but this holds when we have satisfied the first condition.
Geometrically, a point � lies on the line through � and

�
if the vector � in the

homogeneous model lies in the plane spanned by � and
�
: eq.(42) is the state-

ment that they span no volume. This is depicted in Figure 12b or c. You see
that the geometry of homogeneous subspaces of 3-space is a faithful representa-
tion of the geometry of offset subspaces in 2-space. In the classical homogeneous
model, one can only use this fact for the representation of points, since with vec-
tors one can only span 1-dimensional subspaces representing 0-dimensional offset
subspace. With geometric algebra, we can suddenly use this idea to describe any
affine (i.e. offset) subspace. We simply continue this construction: an element of
the oriented plane through the points � ,

�
and � is represented by �

��� �
� , and so

on for higher dimensional ‘offset’ subspaces – if the space has enough dimensions
to accommodate them.
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8.2.3 Equivalence of alternative characterizations

A special and rather satisfying property of this construction is its insensitivity to
the kind of objects we use to construct the subspace. Of course the element of the
line through � and

�
is determined by two points, or by a point and a direction. We

would normally think of those as different constructions. However, in geometric
algebra

�
� � �

�
� � � ��� � (43)

(verify this!). So the two are exactly equal, they produce the same element by the
same operation of ‘taking the outer product’. Moreover, the intrinsic ‘sliding’ sym-
metry of the support vector (any of ��� � � � � � � can be used) is also automatically
absorbed in the representation �

� �
due to the ‘sliding’ symmetry of the outer prod-

uct term �
�
� in it. For instance, we may rewrite it as �

�
�
� �� ��� � � � � � � � � � ,

showing that the midpoint �� ��� � � � is on the carrier line. We have in �
� �

just the
right mixture of specificity and freedom to denote the desired geometric entity.

You may verify that in general, a � -dimensional subspace element
�

deter-
mined by the points at locations � � � ����� �7	 is represented in the homogeneous
model by the � � ��� � -blade

� �
� �
������� �

� 	
and that this is equivalent, by the rules of computation for the outer product, to
specifying it by a point and � directions

� �
� �
� ���C� ��� � ��� ����� � ���7	 ��� � �

or any intermediate form specifying some positions and some directions. It is satis-
fying not to have to make different data-structures for those many ways of specify-
ing this single geometrical object; the ‘constructor’

�
takes care of it automatically.

Testing of equivalence of various objects is therefore much simplified. The paper
[12] goes on to use this to develop a complete ‘simplicial calculus’ for simplices
specified in this manner, deriving advanced results in a highly compact algebraic
and computational manner.

8.2.4 Intersection and incidence

The � ����� and � ���! operations can be applied immediately to blades in the homo-
geneous model, and return blades representing the intersection and union of the
corresponding Euclidean entities. Of course � ����� and � ���! should be implemented
as basic operations, but it pays to look in a little more detail how the various ele-
ments of the Euclidean results are packaged in a single homogeneous result, to get
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a feeling for the power of the representation. To do so we consider separate cases
– but we emphasize that the � ����� and � ���  themselves do not show such a breakup
in cases explicitly: they are handled completely internally and automatically.

� line and hyperplane
When intersecting a line with a hyperplane in general position (two lines
in 2-space, a line and a plane in 3-space), the � ����� produces the unique
intersection point, weighted by an ‘intersection strength’ denoting how per-
pendicular the intersection is, and hence how significant numerically.

Let the line be �
� 
 , and the hyperplane

�����
, both in general position in

� -dimensional space with pseudoscalar
�
. Then their � ���  is

�
� , and we get

for their � ����� after some rewriting:

� � � 
 � � � � ��� � � �
� 

� ��� � ��� � 
 � � ��� � 


� � � � �
�
�

(duality relative to
�
� ), and this therefore represents the point at location

��� � 
 � � ��� � 
 � � � � �
�
�


 � ���
So we obtain a clear geometrical entity as a result of such a ������� , as long
as 
 � ��� 
� �

; which is the demand 
 ��� 
� �
equivalent to the linear

independence demand usually expressed as a determinant in the classical
treatment. Note how the point is fully expressible in closed form, using only
basic geometric operations.

� parallel lines
Geometric algebra still gives consistent results when we compute the � �����
between subspaces that do not geometrically intersect in the classical sense.

For instance, between two parallel lines �
� 
 and

� � 
 , in a plane with
2-blade

�
determining their � ���! and the corresponding duality, we get (after

some rewriting):

� � � 
 � � � � � 
 � � � ��� ��� � � 
 � � 
 �
exhibiting the common directional part 
 , weighted by a scalar magnitude
proportional to the distance of the lines. This is still clearly interpretable, and
more importantly, one can continue to compute with it since it is a regular
element of the algebra. Its only unusual aspect is in its interpretation, not in
its computational properties.
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� skew lines
Similarly, by a direct computation (see [4]), you may establish that two skew
lines �

� 
 and
� �

� in 3-dimensional space (which therefore have a � ���  of�
�
� �


 in the homogeneous model), have a ������� of

� � � 
 � � � � � � � � � ��� ��� ��� 
 � � � �

(with duality relative to
�

 ). This is a scalar, proportional to the perpendic-

ular signed distance between the two lines (weighted by the � ����� of their
directions 
 � � � ��
 � � ��� � � in their common plane

� � ).
These examples suggest that the ������� is not just an intersection operation: it is a
general incidence operation, which computes the highest order geometric object in
common between its arguments. That may be an actual offset subspace (as in the
first example), or the scalar distance, possibly as a factor for common directional
elements. All are legitimate outcomes in the full framework of geometric algebra,
and we have to learn how to write algorithms using this new and stronger notion of
incidence in its computation – it would prevent the splits into the different kinds of
incidence which are required in the classical approach, and which are the potential
source of so many errors.

8.3 The conformal model

A recently developed model of Euclidean space � � is the conformal model � ��� ��� � .
This is a true algebra of points, or rather, an algebra of spheres (with points be-
ing spheres of zero radius). Again, points at locations � and � are represented
by vectors � and

�
in the model, but now in a manner such that the inner product

represents their Euclidean distance:

�
� � �

� �� ��� ��� � � (44)

In particular, �
�
�
� �

, so that points are represented by vectors which have –
in their representative space – a zero norm! To do this and still have a complete
geometric algebra requires two extra dimensions, so an � -dimensional Euclidean
space is now represented using the geometric algebra of an � � � 	

�
-dimensional

space. Moreover, one of these extra dimensions is represented by a basis vector
which squares to � � (such spaces are known as Minkowski spaces).

A useful basis for this space is: an orthonormal basis for the Euclidean space
embedded in it, and the vectors

�
� and

�
� to represent the point at the origin, and

the point at infinity, respectively. The two satisfy:

�
�
� � � � � , they are null vectors:�

�
� �
�
� �

and

�
� � � � � �

, and they are orthogonal to the Euclidean subspace,
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so that

�
�
�

�
� �

and

�
� �

�
� �

for any ��� � � . The representation of a point �
of Euclidean space in this conformal model is the vector:

�
� �

� � � � �� � �
�
�

(or a scalar multiple). You may verify that � � � �
, and that

�
� � � �

�
��� � � �� � �

�
� � � �

�
��� � � �� � �

�
� � � � �� � � � � � � � �� � � � � �� � � � � � �

as desired.
Any point � on the hyperplane perpendicularly bisecting the line segment �

�

satisfies � � ���
� � � � � ���

� � , and therefore:

� � � � � � � � �
�

It follows that
�
� �

� � � � � � � �� � � � � � � �
�
� dually represents the midplane of

� and
�
, see eq.(20). In general, a hyperplane with orthogonal support vector



is

(dually) represented by the vector

� � 
 � � � �
�

or any multiple of it, such as � �
� � � with � its normal vector and

�
the support

along � of the hyperplane. You may verify that the equation � � � � �
is indeed

equivalent to the normal hyperplane equation �
�
�
���

.

8.3.1 Spheres are blades

The direct expression of the Euclidean distance by the inner product in eq.(44)
implies that the equation

� � � � � ���� �
is the equation of a sphere with radius � and center � . We rewrite this to

� on sphere with radius � and center � ��� � � � � � �� � �
�
� � � � �

so this shows that the vector � � �� � � dually represents a sphere. Where the ho-
mogeneous model can be used to code a hyperplane by a homogeneous normal
vector, the conformal model (dually) represents a complete sphere by a single rep-
resentative vector! In the conformal model, (dual) spheres are basic elements of
computation. We get an algebra of spheres; a point is just a (dual) sphere of radius
zero.

The direct (rather than dual) representation of a sphere is through the wedge
product: spheres are blades in the conformal model. This is obvious since the
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dual of the vector � � �� � �
�
� is an � � � � � -blade in the � � � 	

�
-dimensional

representation space. So, we have:

� on sphere through � ,
�
, � , � ��� � � � � � � � �

�
�
� � �

�

Moreover, the two representations are exactly dual in the conformal representa-
tion, so we can compute the center and radius of a sphere given by four points
immediately through using:

�
� � �

�
�

�
� � � � �� � �

�
� � �

It is very satisfying that these two totally different specifications of a sphere should
be literally duals of each other, i.e. perpendicular to each other in the representative
space of the conformal model. It is also a very pleasant surprise that the very
complicated symmetries of four points determining the same sphere are simply
reduced to the anti-symmetry of the outer product (as were the symmetries of the
support vectors of hyperplanes in the homogeneous model). Spheres are not really
new objects requiring totally new products – as long as you treat them in their own
algebra, they behave just like subspaces.

We note that �
� �

is a 1-dimensional sphere, i.e. the computational represen-
tation of a point pair. In contrast to the homogeneous model, �

� �
now really has

the semantics of a localized line segment rather than merely a line element.

8.3.2 Intersection of spheres

In the homogeneous model we saw that a factorization like eq.(43) gave literal
equivalence of the same geometric object specified in different ways. Such simpli-
fications also occur in the conformal model. Indeed, the dual equivalence of the
sphere specifications just treated can be used in this way. Another example is the
intersection of two spheres, which should produce a circle in a well-defined plane.
Let us take a simple example, equal sized spheres of radius � at opposite sides

� �
of the origin. The dual of their intersection is computed as the outer product of
their duals, which can then be rewritten in more convenient form:

�
�
� � � � �� � � � � � � �

�
� � � �

�
� � � � �� � � � � � � �

�
� � � 	 � � �

�
� � �� � � � � � � �

�
� �

The right hand side is immediately recognizable as the dual of the intersection of
a hyperplane with normal � through the origin (its dual representation is � ) with a
sphere at the origin of radius � � � � � . So these two alternative representations of the
intersection circle are just two factorizations of the element of geometric algebra
representing it (many other factorizations exist). Note how we can compute directly
with spheres and planes rather than with equations asserting properties of points
on it.
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8.3.3 Unification of translations and rotations

The conformal model unites rotations and translations in a satisfying manner: both
are representable as the exponent of a 2-blade. We have seen that the rotations
require a 2-blade

� � � 	 denoting a plane in the Euclidean space, and that a rotation
can then be represented as

rotation: � ��
� � ����� � �

� ����� � �
A translation turns out to be representable as the exponent of a 2-blade

�
� �

�
�
	

containing the point at infinity and the translation vector � . Because

�
� squares to

zero and commutes with � , we obtain���
��� � � � � �

�
� �

�
	 �

You can now use this to verify that the translation of the point at the origin (repre-
sented by

�
� ) indeed gives the point at � :

�
� � � � � � � � �

�

���
� � � � � �

� � � � �� � �
�
� �

Having rotations and translations in the same form permits a concise treatment of
rigid body motions, presenting new unifying insights in traditional representations
such as screws [9]. This may well transfer them from theoretical mechanics to
practical computational geometry, as the next refinement after quaternions.

9 Conclusion

This introduction of geometric algebra intends to alert you to the existence of a
limited set of products that appears to generate all geometric constructions in one
consistent framework. Using this framework can simplify the set of data structures
representing objects since it inherently encodes all relationships and symmetries
of the geometrical primitives in those operators (an example was eq.(41)). Also,
it could serve as a straight-jacket for the specification of geometric algorithms,
preventing the unbridled invention of new operations and objects without clear
and clean geometrical meaning, or well-defined relationships to other objects in
the application. If our hopes are correct, this straight-jacket would actually not
be a limitation on what one can construct; rather it contains precisely the right
set of operations to provide a precise language for arbitrary constructions. The
basic operations even have the power to model the geometry of spheres and their
interactions; thus the same syntax admits of varied semantics.

That such a system exists is a happy surprise to all learning about it. Whether
it is also the way we should structure our programming is at the moment an open
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question. Use of the conformal model would require representing the computa-
tions on the Euclidean geometry of a 3-dimensional space on a basis of 	 
 � � ���

	
elements, rather than just 3 basis vectors (plus 1 scalar basis). It seems a hard sell.
But you often have to construct objects representing higher order relationships be-
tween points (such as lines, planes and spheres) anyway, even if you do not encode
them on such a ‘basis’. Also, our investigations show that perhaps all one needs
to do all of geometry are blades and operators composed of products of vectors;
the product combinations of this limited subset can be optimized in time and space
requirements, with very little overhead for their membership of the full geometric
algebra. That automatic membership would enable us to compute directly with
lines, planes, circles and spheres and their intersections without needing to worry
about special or degenerate cases, which should eliminate major headaches and
bugs. We also find the coordinate-free specification of the operations between ob-
jects very attractive; relegating the use of coordinates purely to the input and output
of geometric objects banishes them from the body of the programs and frees the
specification of algorithms from details of the data structures used to implement
them. Such properties makes geometric programs so much more easy to verify,
and – once we have learned to express ourselves fluently in this new language – to
construct.

We are currently investigating these possibilities, doing our best to make the
geometric algebra approach a reasonable alternative. The main delay now is that
the algebra dictates a new way of thinking about geometry which requires one to
revisit many old constructions. This takes time, but is worthwhile since it appears
to simplify the whole structure of geometric programming. At the very least, we
would hope geometric algebra to be a useful meta-language in which to specify
geometric programs; but the proven efficiency of quaternions, which are such a
natural part of geometric algebra, suggests that we might even want to do our low-
level computations in this new computational framework.

10 Further reading

There is a growing body of literature on geometric algebra. Unfortunately much
of the more readable writing is not very accessible, being found in books rather
than journals. Little has been written with computer science in mind, since the
initial applications have been to physics. No practical implementations in the form
of libraries with algorithms yet exist (though there are packages for Maple [1] and
Matlab [5] which can be used as a study-aid or for algorithm design). We would
recommend the following as natural follow-ups on this paper:

� GABLE: a Matlab package for geometric algebra, accompanied by a tutorial
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[5].

� The introductory chapters of ‘New Foundations of Classical Mechanics’ [8].

� An introductory course intended for physicists [2].

� An application to a basic but involved geometry problem in computer vision,
with a brief introduction into geometric algebra [11].

� A paper showing how linear algebra becomes enriched by viewing it as a
part of geometric algebra: [10].

If you read them in approximately this order, you should be alright. We are work-
ing on texts more specifically suited for a computer graphics audience; these will
probably first appear as SIGGRAPH courses.
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Scope
This set of notes gives some background to the material presented in the applications
lectures. More detail can be found in the references listed at the end of these notes.

The notes cover some of the material presented in the lectures, mainly the inverse kine-
matics and dynamics. The notation follows that in the course although the references
listed adopt a slightly different notation scheme.

1 Tracking, analysis and Inverse Kinematics

1.1 Introduction

The main driving force behind the development of the modelling techniques we will de-
scribe in subsequent sections has been the need to provide fast and efficient algorithms for
optical motion capture. Optical motion capture is a relatively cheap method of producing
3D reconstructions of a subject’s motion over time, the results of which can be used in a
variety of applications; biomechanics, robotics, medicine, animation etc. Using a system
with few cameras (3 or 4) we find that in order to reliably match and track the data (con-
sisting of bright markers placed at strategic points on the subject) we must use realistic
models of the possible motion. Once the data has been tracked using such models, we are
in a position to analyse the motion in terms of the rotors we have recovered.

The mathematical language we will use throughout will be that of geometric algebra
(GA). This language is based on the algebras of Clifford and Grassmann and the form
we follow here is that formalised by David Hestenes [1]. There are now many texts and
useful introductions to GA, [2, 3, 4, 5].

1.2 Rotations

If, in 3D, we consider a rotation to be made up of two consectutive reflections, one in the
plane perpendicular to a unit vectorm and the next in the plane perpendicular to a unit
vectorn, it can easily be shown [4] that we can represent this rotation by a quantityR we
call arotor which is given by

R = nm

Thus a rotor in 3D is made up of a scalar plus a bivector and can be written in one of the
following forms

R = e�B=2 = exp

�
�I

�

2
n

�
= cos

�

2
� In sin

�

2
; (1)

2



which represents a rotation of� radians about an axis parallel to the unit vectorn in a
right-handed screw sense. Here the bivectorB represents the plane of rotation. Rotors act
two-sidedly, ie. if the rotorR takes the vectora to the vectorb then

b = RaRy:

whereRy = mn is the reversion ofR (i.e the order of multiplication of vectors in any part
of the multivector is reversed). We have that rotors must therefore satisfy the constraint
thatRRy = 1. One huge advantage of this formulation is that rotors take the same form,
i.e. R = � exp(B) in any dimension (we can define hyperplanes or bivectors in any
space) and can rotate any objects, not just vectors; e.g.

R(a^b)Ry = hRabRyi2 = hRaRyRbRyi2

= RaRy^RbRy (2)

gives the formula for rotating a bivector.

Before we leave the topic of rotations, we will outline one property of rotors which will
turn out to be familiar to us from classical Euler angle descriptions of 3D rotations. Con-
sider an orthonormal basis for 3-space,fe1; e2; e3g; suppose we perform a rotationR1,
whereR1 = e�I�1e1, i.e. we first rotate an angle�1 about an axise1. We then follow this
by a rotation of�2 aboutthe rotated e2 axis – this second rotor,R2, is given by

R2 = e�I�2R1e2R
y
1

The combined rotation is therefore given byRT = R2R1 – this can be written as follows:

RT = fcos �2=2� IR1e2R
y
1 sin �2=2gR1

= R1fcos �2=2� Ie2 sin �2=2gR
y
1R1

= R1R
0
2 (3)

sinceR1R
y
1 = 1 andR1�R

y
1 = � for � a scalar.. Thus ifR0

2 is the rotation of�2 about
thenon-rotated axis (i.e. juste2 in this case), we see that the compound rotation can be
written in two ways

R2R1 = R1R
0
2 (4)

Now recall the classical Euler angle formulation: any general rotation can be expressed
as follows: a rotation of� about thee3 axis, followed by a rotation of� about therotated
e1 axis, followed by a rotation of about therotated e3 axis [6], as shown in figure 1

Something we always want to do is to apply such a rotation to a vectorx. In GA terms
we have 3 rotors representing the 3 rotations:

R1 = expf�I
�

2
e3g; R2 = expf�I

�

2
e01g; R3 = expf�I

 

2
e003g

3



Figure 1: Sketch of the three elementary rotations in the Euler angle formulation – in
which initial axes(e1; e2; e3) are rotated to final axes(e1f ; e2f ; e3f)

wheree01 = R1e1R
y
1 ande003 = R2R1e3R

y
1R

y
2. The combined rotor is

RT = R3R2R1 so that x0 = RTxR
y
T

This is all very straightforward, mainly because we are dealing withactive transforma-
tions.

Now, if we implement our Euler angle formulation via rotation matrices, [6], we see that
we have 3 rotations matrices:

A1 =
�

cos� sin� 0

� sin� cos � 0

0 0 1

�
A2 =

�
1 0 0
0 cos � sin �
0 � sin � cos �

�

A3 =
�

cos sin 0

� sin cos 0

0 0 1

�

which represent the rotations about the non-rotated axes and we apply these matrices in
reverse order to form

AT = A1A2A3 so that x0 = ATx

If R0
1; R

0
2; R

0
3 are the rotors representing the rotations encoded inA1; A2; A3 (i.e. rotations

about the non-rotated axes), then we therefore see that (notingR0
1 = R1)

R0
1R

0
2R

0
3 = R3R2R1

which is precisely the formula that we know relates rotations about rotated and non-
rotated axes given in equation 4. Confusion often arises due to thepassive nature of
the Euler angle formulation as given in standard textbooks – there is no such confusion
possible if we work totally withactive transformations, as one is forced to do with the
rotor formulation.

1.3 Articulated Motion Models: Forward Kinematics and Tracking

We begin by considering a simple model of a leg as two linked rigid rods shown in fig-
ure 2. Let us assume that the first rod,AB, can rotate with all degrees of freedom about
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Figure 2: Two linked rigid rods used to simulate the leg

point A but that the second rod,BC, can only rotate in the plane formed by the two
rods (i.e. about an axis which is perpendicular to both rods and initially aligned with the
e2 axis). In reality more complex constraints can be considered.e1; e2; e3 form a fixed
orthonormal basis oriented as shown.xa; xb; xc are the vectors representing the 3D posi-
tions ofA;B;C respectively andx1 = xb � xa andx2 = xc � xb, which, initially, take
the valuesd1e1 andd2e1. We can immediately write down the position of pointsB andC
as

xb = xa + d1R1e1R
y
1 (5)

xc = xb + d2R2R1e1R
y
1R

y
2 (6)

where we haveR1 = expf�I �1
2
n1g and we allow for the fact that the pointA may move

in space (note here that we allow any rotation of rodAB aboutA, although we may want
to only have 2 dof rather than 3 if we are not interested in the orientation of the axes
atA). We also have thatR2 = expf�I �2

2
n02g with n02 = R1e2R

y
1. Using the fact that

R2R1 = R1R
0
2 with R0

2 = expf�I �2
2
e2g we are able to give the position of the ankle,xc

as

xc = xa + d1R1e1R
y
1 + d2R1R

0
2e1R

y0
2R

y
1 � xa +R1fd1e1 + d2R

0
2e1R

y0
2gR

y
1 (7)

Thus we are able to write down, in a manner which deals only with active transformations,
such forward kinematics equations for arbitrarily complex mechanisms. But this is not the
only advantage of this approach; we can now have the elements of ourstate asrotors – it
is well known that singularities can occur using Euler angles (i.e. when an angle goes to
zero,90Æ or other specific ranges) and we can avoid many of these singularities using the
rotor components as our variables. The use of such models in optical tracking scenarios
is briefly discussed here.

In a typical multi-camera tracking problem where we place markers on joints, the mea-
surements (2D points in the camera planes) will be related to the state via ameasurement
equation:

y(k) = Hk(x(k)) +w(k) (8)
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where they(k) is our set of measurements (observations) at timet = k,x(k) is the state at
time t = k (parameters describing our model(s)), andw(k) is a zero-mean random vector
representing noise at the detection points. The functionHk relates the model parameters
to the observations. In this case we take our model parameters to be the coefficients of the
bivectors representing the rotors (B = b1Ie1 + b2Ie2 + b3Ie3) and then use expressions
such as equation 7 to relate these to our observations.

Theprocess equation
x(k + 1) = Fk(x(k)) + v(k)

tells us how our system (model) evolves in time; herev(k) represents the process noise.
In the case described,Fk tells us how we believe the bivectors to be evolving – one might
argue that the variation of the bivectors will be smoother than the evolution of separate
Euler-angles.

In general,Hk will be extremely non-linear and so the above problem can be solved by
applying an extended Kalman filter (EKF) to update our model estimates and predicted
observations at each time step.

A detailed comparison of the difference between using Euler-angles and using bivector
coefficients as the scalar model parameters in such tracking problems will be given else-
where.

1.4 Inverse kinematics (IK)

Inverse kinematics is the procedure of recovering the model or state parameters given the
measurements – in particular, when incomplete sets of measurements are given (i.e. not
all the joint coordinates) we can, in certain cases, recover a unique model or a specified
family of solutions. In this section we shall outline the use of GA in solving IK problems
by consideration of a particular, fairly simple, example. The example we choose is the
following (it is one which often appears in standard texts); a system consisting of three
linked rigid rods representing a typical insect leg – such a setup is commonly used in
walking robots and is illustrated in figure 3. Here we fix a set of axes represented by unit
vectors(e1; e2; e3) (note that in the figure,�e1;�e2; e3 are shown) at the basal joint, so
that the angle of the first link, or coxa, is given by the Euler angles(�; �; �), and the rotor
representing this rotation is

RA = e�I
�
2
e3e�I

�
2
e1e�I

�
2
e3 � R�R�R� (9)

Generally the angles(�; �) are taken as known, so that� alone describes the position of
the first link. The second (femur) and third (tibia) links are such that only rotation in the
plane of the three links is allowed, so that the positions of the leg are fully described by
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Figure 3: Three linked rigid rods representing the leg of an insect

two further angles,� and as shown in figure 3. If we take our initial configuration to
be that in which the leg is fully extended with all links lying along the rotated (byRA) e2
direction (i.e.� and = 0), then the rotations at jointsB andC are given by

RB = eI
�
2
e0
1 and RC = eI

 
2
e00
1 (10)

wheree01 = RAe1R
y
A; e001 = RBRAe1R

y
AR

y
B. Note here that we are rotating about the

�e1 direction in order to give the sense of� and shown in figure 3. We are thus able to
write down the postion vectors of all joints and finally of the foot positionxP as follows

xB = xA +RA(�l1e2)R
y
A � R�R�R�(�l1e2)R

y
�R

y
�R

y
� (11)

xC = xB +RBRA(�l2e2)R
y
AR

y
B = xB +RAR

0
B(�l2e2)R

y0
BR

y
A (12)

xP = xC +RCRBRA(�l3e2)R
y
AR

y
BR

y
C =

xC +RAR
0
BR

0
C(�l3e2)R

y0
CR

y0
BR

y
A (13)

whereR0
B = eI

�
2
e1 andR0

C = eI
 
2
e1. We can therefore writexP as

xP = xA +RAf�l1e2 +R0
Bf�l2e2 +R0

C(�l3e2)R
y0
CgR

y0
BgR

y
A (14)

This uniquely gives the forward kinematic equations in terms of the three rotorsRA; RB; RC ;
if one was to convert this to angles one gets the following equations (which are conven-
tionally obtained when one uses transformation matrices to denote position of one joint
relative to the previous joint [7]):

px = (cos� cos ~� � cos� sin� sin ~�)[l2 cos�+ l3 cos(�+  ) + l1]

+ sin� sin�[l2 sin�+ l3 sin(�+  )]

py = (sin� cos ~� + cos � cos� sin ~�)[l2 cos�+ l3 cos(�+  ) + l1] (15)

� sin� cos�[l2 sin�+ l3 sin(�+  )]

pz = sin� sin ~�[l2 cos�+ l3 cos(�+  ) + l1] + cos�[l2 sin�+ l3 sin(�+  )]
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In the above,~� = � � �=2, since the convention (following Denavit-Hartenberg) is to
measure this basal rotation angle from thee2 axis rather than from thee1 axis as our rotor
formulation has done. Now, the inverse kinematics comes in when we try to recover the
joint angles(~�; �;  ) given (px; py; pz) (and the origin of coordinates). Conventionally
the solution is obtained by a series of fairly involved matrix manipulations to give the
following expressions for the joint angles:

~� = arctan

�
�px cos� sin�+ py cos� cos�+ pz sin�

px cos�+ py sin�

�

 = arctan

0
@�

s
1�

�
z2 + x2 + y2 � l22 � l23

2l2l3

�2

=
z2 + x2 + y2 � l22 � l23

2l2l3

1
A

� = arctan

�
z

x2 + y2

�
� arctan

�
l3 sin 

l2 + l3 cos 

�
(16)

where

x = px cos�+ py sin�� l1 cos ~� (17)

y = �px cos � sin�+ py cos � cos�+ pz sin�� l1 sin ~� (18)

z = px sin� sin�� py sin� cos�+ pz cos � (19)

In standard texts it is often noted that it is better to express joint angles in terms of arctangent
functions to avoid quadrant polarities – we will return to this point later when discussing problems
with this Euler angle formulation. Suppose that we have the pointsxa; xb; xc; xp, we will now
show that it is straightforward, from equations 11-13, to recover each of the rotors,RA; RB ; RC .
In order to do this we shall use a simple result from GA (see [4] for more details). Suppose that a
set of three (non-coplanar and not necessarily orthonormal) unit vectorse1; e2; e3 is rotated by a
rotorR into a set of three other (necessarily non-coplanar) unit vectorsf1; f2; f3 – then the unique
rotor which performs this job is given by

R / 1 + eifi (20)

where the proportionality factor is easily found by ensuringRRy = 1 andfeig denotes the recip-
rocal frame offeig. The reciprocal framefeig is such thatei �ej = Æij and can be formed (for 3D)
as follows

e1 =
1

�
Ie2^e3

e2 =
1

�
Ie3^e1 (21)

e3 =
1

�
Ie1^e2; (22)

whereI� = e3^e2^e1.

This provides us with a remarkably easy way of extracting rotors if we know the joint coordinates.
Let us first consider equation 11 forRA. We can rewrite this equation as

Ry
�R

y
�(xB � xA)R�R� = R�(�l1e2)R

y
� (23)
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From this we can see that the vectorf1 = �l1e2 is rotated into the vectorg1 = Ry
�R

y
�(xB �

xA)R�R� and also that, sinceR� = e�I
1

2
�e3 , the vectorf2 = e3 is rotated into itself, i.e.g2 = e3.

From this it follows thatf3 = If1^f2 must be rotated intog3 = Ig1^g2. Thus, using equations 22
we can formff ig and the rotorR� as follows

R� / 1 + f igi

where [f1; f2; f3] = [�l1e2; e3; If1^f2]

and [g1; g2; g3] = [Ry
�R

y
�(xB � xA)R�R�; e3; Ig1^g2] (24)

ThusRA is then recovered from equation 9. Using this we can now look at equation 12 which can
be rewritten as

Ry
A(xC � xB)RA = R0

B(�l2e2)R
y0
B (25)

We can then invert as above to give

R0
B / 1 + f igi

where [f1; f2; f3] = [�l2e2; e1; If1^f2]

and [g1; g2; g3] = [Ry
A(xC � xB)RA; e1; Ig1^g2] (26)

Finally,R0
C can be recovered by precisely the same means using

R0
C / 1 + f igi

where [f1; f2; f3] = [�l3e2; e1; If1^f2]

and [g1; g2; g3] = [Ry0
BR

y
A(xP � xC)RAR

0
B ; e1; Ig1^g2] (27)

Thus, we see that we are able to invert our forward kinematic equations trivially if we have the
coordinates of the joints. Of course, the IK problem as we described it involved being given only
xA andxP . The plan we advocate is therefore to findxB andxC by purely geometric means as an
initial stage, followed by the rotor inversion process described above. To illustrate this, consider
how we would findxB ; xC for the given example.

TakingxA at the origin, we know thate03 andxP must define the plane in which all the links must
lie, call this plane� – see figure 4. We can formxB via

xB = l1
(xp � (xP �e

0
3)e

0
3)

jxp � (xP �e03)e
0
3j

(28)

There are clearly two possibilities forxC , given by the intersections of the circles lying in the
plane� having centres and radii given by(xB ; l2) and(xP ; l3). If we then defineek = (xP �
xB)=(jxP � xB)j ande? a vector perpendicular toek lying in �, it is not hard to show thatxC is
given by

xC = xkek + x?e?

where

xk =
l22 � l23 + (xP � xB)

2

2jxP � xB j
(29)

x2? = �

�
[(l2 � l3)

2 � (xP � xB)
2][(l2 + l3)

2 � (xP � xB)
2]

4jxP � xBj

�
(30)
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Figure 4: Figure illustrating setup used to determine joint positions from geometry

When the geometry is more complex than given in this example (indeed, things will get more com-
plicated if we also have prismatic joints rather than simple revolute joints) the joint positions, or
family of joint positions are found by intersecting circles, spheres, planes and lines (with possible
dilations) in 3D. The system that we are currently working on performs this initial geometric stage
in the 5D conformal geometric algebra [8, 9]. This framework provides a very elegant means of
dealing with incidence geometry and extends the functionality of projective geometry to include
circles and spheres. A feature of the conformal setting is that rotations, translations, dilations and
inversions in 3D all become rotors in 5D.

We now return to the question of whether we gain any advantages from doing our IK problems
in geometric algebra. In the simple case illustrated, simulations have shown that we can recover
the rotors (there always exist two sets of solutions) exactly for any combination of angles – there
is no need to restrict any of the angles to particular ranges. However, when the equations in 16
are used to recover angles, we find that the whole process is plagued with conditionals, i.e. the
correct solutions are obtained only if signs of various terms are checked for various angles in
various ranges. From a computing point of view this is expensive and may ultimately lead to
hard-to-track-down errors.

1.5 Conclusions

Here we have illustrated how the geometric algebra, and particularly the rotor formulation within
the algebra, can be used as a mathematical system in which forward kinematics, motion modelling
and inverse kinematics can be elegantly expressed. The formulations given have been put to use
in tracking problems in which optical motion capture data is tracked via constrained articulated
models and in inverse kinematics of simple leg structures. We believe that the system as outlined
here has enormous potential in more complex inverse kinematics problems where we would like
to define families of possible solutions – the key here would be to do the initial geometry stage via
a 5D conformal geometric algebra. Work in progress also includes the analysis of human motion
data via our articulated models in an attempt to understand how motions are described using the
rotor formulation.
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2 Inferring dynamical information from 3D position data
using geometric algebra

2.1 Introduction

Estimating inverse dynamic (ID) quantities is essential in areas such as robot control, biomedical
engineering and animation. In the field of robotics there are numerous techniques and procedures
for calculating these quantities [10, 11]. The computational procedure given in [11] for estimat-
ing ID quantities is the Luh-Walker-Paul algorithm [12]. Also in the context of estimating ID
quantities from marker data, [13] has presented an inertial model and a method to calculate the
joint moments, although this is not an explicit algorithm for calculation of these quantities. Here
we present a step-by-step algorithm to estimate the ID quantities using only the 3D positions of
markers attached to an articulated body in general motion using Geometric Algebra (GA). The
simplicity of the derivations given here is due to the fact that the rotation of a body is represented
as a single quantity; namely the rotational bivector. When Euler angles are used to model the
rotation it is extremely difficult to formulate the ID quantities in a simple manner. Using the stan-
dard technique of employing angular velocity vectors [11, 13] does not yield a simple connection
between the rotational quantities and the actual ID parameters. In such formulations it is not clear
how to obtain the angular velocity vector in numerical calculations when the axis and the angle of
rotation change with time. Since the direction and the magnitude of rotation are incorporated into
a single quantity when rotational bivectors are used, each kinematic and dynamic parameter can
be expressed directly.

First we present the basic formulation of the dynamic equations in GA and then derive the angular
velocity and acceleration bivectors given the rotations. Then we adapt these results for calculations
with marker data. We apply the techniques to real world data obtained from an experimental setup
of a person walking on a moving bridge.

2.2 Some Basic Formulations

Here we either derive or state some basic formulae needed for the calculation of inverse dynamics.

2.3 Angular Velocity

If set of vectorsffkg on a body rotating in space can be related to a fixed time independent set of
corresponding vectorsfekg by a time dependent rotorR, we can write

fk = RekR
y. (31)

Define the angular velocity bivector of the rotating system [14, 15] in space,
s, via the equation

_fk = �
S � fk (32)
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where operator� denotes the commutator product defined asA�B = �B�A = (AB �BA) =2
and _fk are the velocity vectors. This is analogous to the ‘conventional’ definition of_fk = !xfk
wherex denote the vector cross product and! is the angular velocity vector which is related to
S
by 
S = I! [14] with I being the pseudoscalar in 3D. Equation (31) can be differentiated with
respect to (wrt) time to give

_fk = _RekR
y +Rek

_Ry. (33)

Note that_ek = 0 sinceek is fixed. But sinceRRy = 1, _RRy +R _Ry = 0, and therefore

_Ry = �Ry _RRy. (34)

Equation (33) can then be re-arranged as_fk =
�
2 _RRy

�
�fk. It can be proved [14] that the quantity

_RRy is a bivector. Hence we can associate it with the angular velocity bivector of equation (32);


S = �2 _RRy (35)

and thus _fk = fk � 
S. It is also possible to rearrange equation (35) to give

_R = �
1

2

SR. (36)

The angular velocity referred back to the body,
B, is the ‘body’ angular velocity and is defined
[14, 15] by


S = R
BR
y. (37)

2.3.1 Linear Velocity, Acceleration and inertial force

In general the points on a rigid body which is in general motion relative to a measuring coordinate
system can be expressed as

yi = RxiR
y + d (38)

whereyi andd are theith point and the displacement of the Centre of Mass (CoM) of the body in
the observation frame respectively.xi is theith point referred to a conveniently chosen fixed set
of axes on the body placed at the CoM. Hence,xi has no time dependence assuming rigidity of
the body. Differentiating equation (38) wrt to time gives the velocity of the point on the body in
the observation frame_yi as

_yi = _RxiR
y +Rxi

_Ry + _d.

Using equations (34) and (35) it is possible to derive (see for e.g. [16]),

_yi = (yi � d)� 
S + _d � RxiR
y � 
S + _d. (39)

Differentiating equation (39) wrt to time again and substituting for( _yi� _d) gives the acceleration
as

�yi = (yi � d)� _
S + [(yi � d)� 
S ]� 
S + �d.

Hence using Newton’s second law, the inertial force,F , acting on the body can be written as

F = m�yi

wherem is the mass of the body if the observation frame is an inertial (constant velocity) frame
of reference.
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2.3.2 Angular momentum, inertia tensor and inertial torque

It is straightforward to derive the angular momentum bivector,L, of a body. In [14] it is shown to
be given by

L = RI(
B)R
y with I(B) =

Z
d3x�x ^ (x � B) (40)

whereI(:) is a linear mapping of bivectors onto bivectors, and is the inertia tensor of the body.
Since the inertia tensor is an integration referred to the ‘fixed’ copy vectors, it is time independent.
But note that
B is time dependent. Inertial torque,� , satisfies� = _L and we can form_L by
differentiating equation (40) wrt time to give

_L = _RI(
B)R
y +RI(
B)

_Ry +RI( _
B)R
y.

But using equation (34)_L can be expressed ([14, 16]) as

_L = �
1

2

SRI(
B)R

y +
1

2
RI(
B)R

y
S +RI( _
B)R
y.

Hence from equation (37), inertial torque is given as ([14, 16]),

� = _L = R
h
I(
B)� 
B + I( _
B)

i
Ry. (41)

2.4 Calculations in terms of rotational bivectors

Here we present a method to calculate the angular velocity bivector
S and the angular accel-
eration bivector_
S given only the rotational bivectorB. The derivation of
S is similar to the
method presented in [17]. First we use the definition of the rotorR in terms of the bivectorB

R � exp(�B) � exp(�
�

2
B̂) � cos(�=2)� sin(�=2)B̂ (42)

whereB = �
2
B̂ andB̂2 = �1, to evaluate

_R = �
_�

2
sin(�=2)�

_�

2
cos(�=2)B̂ � sin(�=2)

_̂
B = �

_�

2
B̂R� sin(�=2)

_̂
B.

Hence we can write
S = �2 _RRy in terms of the above as


S = _�B̂ + 2 sin(�=2)
_̂
BRy. (43)

Since it is easier to evaluate_B than _̂
B and _�, it makes sense to write_� and _̂

B in terms of _B

�2 = �4BB, 2� _� = �4 _BB � 4B _B, _� = �4
�
_B�B

�
=� (44)

whereA�B = (AB +BA) =2 is the anti-commutator product. SincêB = 2B=� and therefore
�B̂ = 2B, we have

_�B̂ + �
_̂
B = 2 _B =)

_̂
B =

�
2 _B � _�B̂

�
=�. (45)
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Note that the formulae for_� and _̂
B in [17] are incorrect due to an error in defining equation (42):

in [17] B is taken as�B̂ rather than�
2
B̂. All subsequent derivations in [17] are correct if we

substitutejBj for �.

In order to evaluate the angular acceleration,_
S , in terms of�, B, _B and �B, we differentiate
equation (43) wrt time and substitute from equation (34) for_Ry to give

_
S = ��B̂ + _�
_̂
B + _� cos(�=2)

_̂
BRy + 2 sin(�=2)

�̂
B ~R + sin(�=2)

_̂
BRy
S (46)

Here,�� and �̂
B are to be evaluated. Differentiating equations (44) and (45) gives

�� = �

�
4
�
�B�B

�
+ 4

�
_B
�2

+ _�2
�
=� and �̂

B =
�
2 �B � ��B̂ � 2 _�

_̂
B
�
=�

Also via equation (37), it is possible to derive the relationship between_
B and _
S as

_
B = Ry _
SR. (47)

A complete derivation of all the above basic results can be found in [16].

Also, as a first approximation, we use the two sided Euler formulae for the numerical derivatives
but if higher accuracy is needed, especially in the noisy data case, a polynomial fit for the function
around each data point can be used. A sophisticated realisation of this is the Savitzky-Golay filters
as implemented in [18].

3 Algorithm for Inverse Dynamics

Here we describe an algorithm for calculating inertial forces and torques given only the marker
positions attached to an articulated model using results from previous sections. The assumptions
are;

1. the 3D marker coordinates (possibly noisy) at each time instance are given

2. the time intervals for the data sets are known or constant

3. markers are labelled in the sense that it is known a priori to which link a marker is attached

4. each link can be modelled as a rigid body, attached either to a ball or a hinge joint.

5. the principal axes of inertia for each link in the observation coordinate frame are known

6. the centre of mass (CoM) in relation to the joint location is known.

Hence each marker position can be expressed as

Rk(l)e
p
r(l)R

y
k(l) + tk = v

p
k(l) (48)
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whereRk(l) is the rotation at thekth time instance of thelth link relative to a given observation
reference coordinate frame. Alsoepr(l) is the vector from the joint to thepth marker at therth time
instance (usually we taker = 1), tk is the translation vector of the joint relative to the observation
reference frame.

Under the assumptions given above, the inertial forces and torques can be calculated by the fol-
lowing algorithm;

1. estimate the joint locationstk, for all time instances

2. estimate the link rotations,Rk(l), relative to the coordinate system at the first time instance,
for all time instances and for all links

3. calculate the vector from a joint to its CoM,ck(l), for all time instances.

4. calculate the total rotation from the principal axes of inertia to the current observation,
RTk (l), for each link at each time instance

5. calculate the corresponding rotational bivectorBTk (l) at each time instance and for each
link

6. estimate the_BT
k (l) and hence calculate inertial forces and torques.

Using the techniques described in [19], it is possible to estimatetk andRk(l) in a least squares
sense. When there is a hierarchical kinematic chain, thelocal averaging global method in [19]
can be used. In that method the positions of the joints are built up from considering only one joint
at a time and averaging the results over the common links between joints.

Then the position vector from the CoR in the case of a ball joint and the perpendicular distance
from the AoR in the case of a hinged joint,ck(l), can be calculated if the relative location of the
CoM to the joint is known (e.g. middle of the link).

If the rotation required to bring the principal axes of inertia for each link to the observation frame,
rr(l), is known (assumption 5), the total rotation of the principal axes can be expressed as

RTk (l) = Rk(l)rr(l).

HenceBT
k (l) can be estimated from

RTk (l) = exp
�
�BT

k (l)
�

. (49)

3.1 Dynamical Equilibrium in the model

In a system that has one or several articulated chains connected to a central body, equilibrium
of the central body can be calculated by working from the bottom of the articulated hierarchy
and transferring forces up to the central body. This is also the foundation of Luh-Walker-Paul’s
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algorithm [12]. Considering the free body diagram for a single link the forces acting on the link
can be expressed as

Fvk(l)� Fvk(l + 1) +m(l)g = m(l)�yvk(l) (50)

whereFvk(l) is the force vector actingon the joint at the beginning of the linkl on thevth kinematic
chain at thekth time instance,Fvk(l + 1) is the force vector actingon the joint at the beginning
of the link l + 1 on thevth kinematic chain at thekth time instance,m(l) the mass of the linkl,
g the gravitational pull per unit mass and�yvk(l) is the acceleration of the CoM. Writing the set of
equations for the linkLv down to link1 whereLv is the last link of thevth chain, we have

Fvk(1) = Fvk(Lv + 1) +

LvX
l=1

m(l)�yvk(l)�

LvX
l=1

m(l)g (51)

where�Fvk(Lv + 1) is taken to be the external force acting at the end of linkLv. Considering the
equilibrium of the central body gives

�

VX
v=1

Fvk(1) = m(b)�ybk (52)

assumingV chains are connected to the central bodyb. Hence substituting forFvk(1) in equation
(52) from equation (51) gives

VX
v=1

Fvk(Lv + 1) =

VX
v=1

LvX
l=1

mv(l)g�

VX
v=1

LvX
l=1

mv(l)d.oty
v
k(l)�m(b)�ybk (53)

An analogous torque relationship can be derived by considering the torque acting on the CoM of
each link giving the final equilibrium equation as

VX
v=1

Tv
k(Lv + 1) = �

VX
v=1

LvX
l=1

�vk (l)� � bk. (54)

The full derivation is given in [16]. As for the forces,�Tvk(Lv + 1) is the external torque acting
on theLvth link.

3.2 Inverse Dynamics from Motion Capture Data

Assuming the location of the CoM, the principal axes of inertia of each link and the 3D marker
positions attached to the links, it is possible to calculate the inertial force and torque quantities
relating to the subject of the motion capture. Assuming the frame rate of the capture system
is constant with an interval ofP , given the bivectorsBTk+1

(l), BT
k (l), B

T
k�1(l), the translations

tk+1(l), tk(l), tk�1(l) and theck(l), the results in the previous sections can be summarised as;

_BT
k (l) �

BT
k+1

(l)�BT
k�1(l)

2P
, �BT

k (l) �
BT
k+1

(l)� 2BT
k (l) +BT

k�1(l)

P 2

�tk(l) �
tk+1(l)� 2tk(l) + tk�1(l)

P 2

�k(l) = 2
q
�BT

k (l)B
T
k (l), B̂T

k (l) =
2BT

k (l)

�k(l)
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y
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k (l)R

y
k
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BT
k (l)R

y
k
T (l)
Sk (l)

�ck(l) = ck(l)� _
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�
ck(l)� 
Sk (l)

�
� 
Sk (l) (55)

Fk(l) = m(l)
�
�ck(l) +�tk(l)

�

Bk (l) = Ry

k
T (l)
Sk (l)R

T
k (l), _
Bk (l) = Ry

k
T (l) _
Sk (l)R

T
k (l)

�k(l) = RTk (l)
h
I(
Bk (l)) � 
Bk (l) + I( _
Bk (l))

i
Ry
k
T (l) (56)

where
Sk (l) and
Bk (l) are the ‘space’ and ‘body’ angular velocity bivectors respectively.

If the data from the whole system is available it is possible to apply the equilibrium equations (53)
and (54) to estimate the external forces and torques acting on the system up to a scale factor using

VX
v=1

Fvk(Lv + 1) =

VX
v=1

LvX
l=1

mv(l)g�

VX
v=1

LvX
l=1

mv(l)
�
�cvk(l) +�tvk(l)

�
�m(b)

h
�cbk +�tbk

i

and
VX
v=1

Tv
k(Lv + 1) = �

VX
v=1

LvX
l=1

�k(l)� � bk

where�cvk(l) and�cbk are evaluated from equation (55) and�k(l) and�bk are evaluated using equation
(56). Note that�cvk(l) +�tvk(l) is the acceleration of the CoM of thelth link at timek of the branch
v.

4 Real world applications and results

The above techniques were applied to a dataset obtained from a bridge simulator [20]. In this
case the bridge was oscillating with one degree of freedom and the human subject walking on
a treadmill on the bridge phase locked into the bridge oscillation. We have assumed that the
oscillation direction is horizontal even though in the actual simulator it has a vertical component.
Eight markers were placed on the joints of the legs of the human subject and three markers were
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Figure 5: (a) A frame of the motion capture data showing the legs of the subject and the
bridge markers. (b) The phase plot of the mechanically measured force on the bridge and
the forces calculated from the motion capture data.

placed on the bridge as shown in figure (5(a)). The markers were captured using a motion capture
system described in [21]. The output of the system is a set of 3D marker positions. Since in this
particular dataset a single marker per limb is placed at the joints, calculation of the joint location
and the rotation from one frame to the next was trivial. As this is not accurate, only qualitatively
accurate results were expected in this experiment. The limbs were modelled as solid cylinders with
axes assumed parallel to the vector between two joint markers. The principal axes and the inertia
tensors were calculated accordingly. The rotation from principal axes to the first frame (rr(l)) was
calculated using the GA method given in [22]. The rotational bivectors were calculated from the
rotors representing the rotations from the principal axes to each frame. The calculated bivectors
were smoothed using Savitzky-Golay filters as implemented in [18] since the data is noisy and first
and second derivatives of the bivectors wrt time must be evaluated. The procedure described in
section (3.2) was then applied to the resulting data.tk+1(l) andck(l) were trivially calculated in
this case as the joint marker location and the half-way point on the corresponding link, respectively.

An example of the results are shown in figure (6) – many more plots are given in [16]. Also the
actual displacement of the bridge was measured mechanically. This displacement data was used
to calculate the bridge acceleration. The phase relationship of the acceleration of the bridge versus
that of the foot is compared in figure (5(b)).

These figures are presented as an illustration of an application of the procedure described in this
paper. For example, note also that data from figure (6) suggests that the very marked twist of the
foot towards the end of the gait cycle (before the foot is raised) seems to be responsible for most
of the lateral force on the bridge from the walker. It is also clear that scalar quantities such as
the angular velocity of the foot (and indeed the lower leg and the upper leg although this data is
not shown here) make smooth cyclic patterns in all directions. Further work will compare the gait
patterns between walkers on swinging and stationary structures. These techniques can be used
to complement data from force plate measurements and can also be used directly for biomedical
engineering applications.

18



0 20 40 60 80 100
−4

−2

0

2

4

6
x 10

−3
(a) acceleration of the foot in oscillating direction

0 20 40 60 80 100
−2

−1

0

1

2

3
x 10

−3
(b) acc. due to rot. only of the foot in oscillating direction

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5
x 10

−4
(c) d(ang. momentum)/dt of the foot in oscillating direction

0 20 40 60 80 100
−0.8

−0.6

−0.4

−0.2

0
(d) rotational bivector direction of the foot in oscillating direction

0 20 40 60 80 100
−0.1

−0.05

0

0.05

0.1
(e) d(rotational bivector direction)/dt of the foot in oscillating direction

0 20 40 60 80 100
1.4

1.6

1.8

2

2.2
(f) rotational angle of the foot

rad
ian

s

0 20 40 60 80 100
−0.1

−0.05

0

0.05

0.1

0.15
(g) angular velocity of the foot

0 20 40 60 80 100
−0.1

−0.05

0

0.05

0.1

0.15
(h) angular acceleration of the foot

Figure 6: (a)-(e) Inverse dynamics quantities of the foot in the approximate oscillating
direction of the bridge plane. (f)-(h) the absolute angle of rotation from the principal axis
to the current position, angular velocity and angular acceleration of the foot. The dotted
lines are left limb and the solid lines are right limb data in all figures. The rectangular
pulses represent the times the corresponding leg is in contact with the bridge. Note that
the y-axis is accurate only up to a scale factor unless labelled.

4.1 Conclusions and future work

Here we have described an algorithm to estimate the quantities relevant in inverse dynamics from
the 3D positions of the points on moving articulated bodies. Although we have mainly concen-
trated on data obtained visually, the techniques can be readily applied to other technologies, such
as magnetic markers. Most of the methods given here can also be used in robotics. In the applica-
tion dataset given, the joint locations and the rotations were estimated trivially. But in general, if
there are multiple markers per link, these quantities can be calculated in a least squares sense using
the techniques described in [23] and [19]. The crucial reason for the resulting simple recipe for
calculating inverse dynamic quantities is the use of a single GA quantity, the rotational bivector,
as the variable quantity rather than treating direction and magnitudes separately.

Clearly more experimental work is necessary to validate the procedures described here. Ideally
the algorithm should be cast in a probabilistic framework and also, a sensitivity analysis, similar
to that given in [10], should be carried out. Such an analysis would estimate the sensitivity of our
derived quantities to errors in the locations of points, models used etc.

We believe that, despite current limitations, the methods we have described here provide a set of
powerful tools for estimation of dynamical quantities for use in engineering, biomedical applica-
tions and computer animation.
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1 Geometric Algebra of 3-D Space

The geometric algebra (GA) of 3-d space is a remarkably powerful tool for solving prob-
lems in geometry and classical mechanics. It describes vectors, planes and volumes in a
single algebra, which contains all of the familiar vector operations for 3-d space. These
include the vector cross product, which is revealed as a disguised form of bivector. The
algebra provides a very clear and compact method for encoding rotations, which is con-
siderably more powerful than working with matrices. This reveals the true signi�cance
of Hamilton's quaternions, and resolves many of the historical diÆculties encountered
with their use.

As a basis set for the geometric algebra of 3-d space we use chose a set of orthonormal
vectors fe1;e2;e3g. All three vectors are perpendicular, so they all anticommute, and
have unit length so they square to +1. From these 3 basis vectors we can generate 3
independent bivectors:

e1e2; e2e3; and e3e1: (1.1)

Each of these encodes a distinct plane, and there are 3 of them to match the 3 inde-
pendent planes in 3-d space. As well as the 3 bivectors the algebra contains one further
object. This is the product of 3 orthogonal vectors, resulting in

(e1e2)e3 = e1e2e3: (1.2)

This corresponds to sweeping the bivector e1e2 along the vector e3. The result is a
3-dimensional volume element and is called a trivector. This is said to have grade-3,
where the word `grade' refers to the number of independent vectors forming the object.
So vectors are grade-1, bivectors are grade-2, and so on. The term `grade' is preferred
to `dimension' as the latter is reserved for the size of a linear space.

In 3-d the maximum number of independent vectors is 3, so the trivector is the highest
grade object, or multivector, in the algebra. This trivector is unique up to scale (i.e.
volume) and handedness (see below). The unit highest-grade multivector is called the
pseudoscalar, or directed volume element. The latter name is more accurate, but the
former is seen more often. (Though be careful with this usage | pseudoscalar can
mean di�erent things in di�erent contexts). To simplify, we introduce the symbol I,

I = e1e2e3: (1.3)

Our 3-d algebra is therefore spanned by

1 feig fei^ejg I = e1e2e3
1 scalar 3 vectors 3 bivectors 1 trivector

(1.4)

These de�ne a linear space of dimension 8 = 23. We call this algebra G3. Notice that
the dimensions of each subspace are given by the binomial coeÆcients.
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e1e1

e2

e2 e3

Figure 1: Handedness. The two frames shown are, by convention, assigned a right-
handed orientation. Both e1e2 and e1e2e3 give rise to right-handed pseudoscalars for
their respective algebras.

The pseudoscalar is, by convention, chosen to be right-handed. This is equivalent
to saying that the generating frame fe1;e2;e3g is right-handed. If a left-handed set
of orthonormal vectors is multiplied together the result is �I. There is no intrinsic
de�nition of handedness | it is a convention adopted to make our life easier. In 3-d a
right-handed frame is constructed as follows. Align your thumb along the e3 direction.
Then the grip of your right hand speci�es the direction in which e1 rotates onto e2
(Fig. 1). The handedness of a frame changes sign if the positions of any two vectors
are swapped.

2 Products in G3

Any two vectors in the algebra, a and b say, can be multiplied with the geometric
product, and we have

ab = a�b+ a^b: (2.1)

Now the bivector a^b belongs to a 3-d space, spanned by the fei^ejg. If we expand
out in a basis,

a =
3X
i=1

aiei; b =
3X
i=1

biei; (2.2)

we �nd that the components of the outer product are given by

a^b = (a2b3 � b3a2)e2^e3 + (a3b1 � a1b3)e3^e1 + (a1b2 � a2b1)e1^e2: (2.3)

The components are the same as those of the cross product, but the result is a bivector
rather than a vector. To understand the relationship between these we �rst need to
establish the properties of some of the new products provided by our 3-d algebra.



4

2.1 Vectors and Bivectors

The three basis bivectors satisfy

(e1e2)
2 = (e2e3)

2 = (e3e1)
2 = �1 (2.4)

and each bivector generates 90o rotations in its own plane. So, for example, we see
that

e1(e1^e2) = e1(e1e2) = e2; (2.5)

which returns a vector. The geometric product for vectors extends to all objects in the
algebra, so we can form expressions such as aB, where B is a general bivector. But
we have now seen that e1(e2^e3) is a trivector, so the result of the product aB can
clearly contain both vector and trivector terms. To help understand the properties of
the product aB we �rst decompose a into terms in and out of the plane,

a = ak + a? (2.6)

(see Fig. 2). We can now write aB = (ak + a?)B. Suppose that we also write

B = ak^b (2.7)

where b is orthogonal to ak in the B plane (Fig. 2). We see that

akB = ak(ak^b) = ak(akb) = (ak)
2b (2.8)

which is a vector in the b direction. On the other hand

a?B = a?(ak^b) = a?akb (2.9)

is the geometric product of 3 orthogonal vectors, and so is a trivector. As expected,
the geometric product of the vector a and the bivector B has resulted in two terms, a
vector and a trivector. We therefore write

aB = a�B + a^B (2.10)

where the dot is generalised to mean the lowest grade part of the result, while the
wedge means the highest grade part of the result.

2.2 Inner Product a�B

From Eq. (2.8) we see that the a�B = ak�B term projects onto the component of a in
the plane, and then rotates this through 90o and dilates by the magnitude of B. We
also see that

a�B = ak
2b = �(akb)ak = �B �a; (2.11)
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ak

a?
a

B
b

a = ak + a?

Figure 2: A vector and a plane. The vector a is decomposed into a sum of two vectors,
one lying in the plane and the other perpendicular to it.

so the dot product between a vector and a bivector is antisymmetric. We use this to
de�ne the inner product of a vector and a bivector as

a�B = 1

2
(aB �Ba): (2.12)

To see that this always returns a vector, consider the inner product a�(b^c). Following
the rules for the geometric product we form:

a(b^c) =1

2
a(bc� cb)

=(a�b)c� (a�c)b� 1

2
(bac� cab)

=2(a�b)c� 2(a�c)b+ 1

2
(bc� cb)a

=2(a�b)c� 2(a�c)b+ (b^c)a; (2.13)

where we have made repeated use of the rearrangement

ba = 2a�b� ab: (2.14)

It follows immediately that

a�(b^c) = 1

2

�
a(b^c)� (b^c)a� = (a�b)c� (a�c)b; (2.15)

which is indeed a pure vector. This is one of the most useful results in geometric
algebra and is worth memorising.

2.3 Outer Product a^B

From Eq. (2.9), the a^B term projects onto the component perpendicular to the plane,
and returns a trivector. This term is symmetric

a^B = a?akb = akba? = B^a: (2.16)
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We therefore de�ne the outer product of a vector and a bivector as

a^B = 1

2
(aB +Ba): (2.17)

Various arguments can be used to show that this is a pure trivector (see later). We now
have a de�nition of the outer product of three vectors, a^(b^c). This is the grade-3
part of the geometric product. We denote the operation of projecting onto the terms
of a given grade with the h ir symbol, where r is the required grade. Using this we can
write

a^(b^c) = ha(b^c)i3 = ha(bc� b�c)i3: (2.18)

But in the �nal term a(b �c) is a vector (grade-1) so does not contribute. It follows
that

a^(b^c) = ha(bc)i3 = habci3; (2.19)

where we have used the fact that the geometric product is associative to remove the
brackets. It follows from this simple derivation that the outer product is also associat-
ive,

(a^b)^c = a^(b^c) = a^b^c: (2.20)

This is true in general.

The trivector a^b^c can be pictured as the parallelepiped formed by sweeping a^b
along c (see Fig. 3). The same result is obtained by sweeping b ^ c along a, which is
the geometric way of picturing the associativity of the outer product. The other main
property of the outer product is that it is antisymmetric on every pair of vectors,

a^b^c = �b^a^c = c^a^b; etc. (2.21)

This expresses the geometric result that swapping any two vectors reverses the orient-
ation (handedness) of the product.

2.4 The Bivector Algebra

Our three independent bivectors also give us a further new product to consider. When
multiplying two bivectors we �nd, for example, that

(e1^e2)(e2^e3) = e1e2e2e3 = e1e3; (2.22)

resulting in a third bivector. We also �nd that

(e2^e3)(e1^e2) = e3e2e2e1 = e3e1 = �e1e3; (2.23)
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a

b
c

a

b

c

a^b
b^c

Figure 3: The Trivector. The result of sweeping a^b along c is a directed volume, or
trivector. The same trivector is obtained by sweeping b^c along a.

so the product is antisymmetric. The symmetric contribution vanishes because the two
planes are perpendicular. If we introduce the following labelling for the basis bivectors:

B1 = e2e3; B2 = e3e1; B3 = e1e2 (2.24)

we �nd that the commutator satis�es

BiBj �BjBi = �2�ijkBk: (2.25)

This algebra is closely linked to 3-d rotations, and will be familiar from the quantum
theory of angular momentum.

It is useful to introduce a symbol for one-half the commutator of 2 bivectors. We call
this the commutator product and denote it with a cross, so

A�B = 1

2
(AB �BA): (2.26)

The commutator product of two bivectors always results in a third bivector (or zero).

The basis bivectors all square to �1, and all anticommute. These are the properties
of the generators of the quaternion algebra. This observation helps to sort out some
of the problems encountered with the quaternions. Hamilton attempted to identify
pure quaternions (null scalar part) with vectors, but we now see that they are actually
bivectors. This has an important consequence when we look at their behaviour under
re
ections. Hamilton also imposed the condition ijk = �1 on his unit quaternions,
whereas we have

B1B2B3 = e2e3e3e1e1e2 = +1: (2.27)

To set up a direct map we must 
ip a sign somewhere, for example in the y component:

i$B1; j$�B2; k$B3: (2.28)

This shows us that the quaternions were left-handed, even though the i; j;k were
interpreted as a right-handed set of vectors. Not surprisingly, this was a source of
some confusion!
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e1

e3

e2^e3

I

Figure 4: The product of a vector and a trivector. The diagram shows the result of the
product e1I = e1(e1e2e3) = e2e3

2.5 Products Involving the Pseudoscalar

The pseudoscalar I = e1e2e3 is the unique right-handed unit trivector in the algebra.
This gives us a number of new products to consider. We start by forming the product
of I with the vector e1,

Ie1 = e1e2e3e1 = �e1e2e1e3 = e2e3: (2.29)

The result is a bivector | the plane perpendicular to the original vector (see Fig. 4).
The product of a grade-1 vector with the grade-3 pseudoscalar is therefore a grade-2
bivector. Reversing the order we �nd that

e1I = e1e1e2e3 = e2e3: (2.30)

The result is therefore independent of order | the pseudoscalar commutes with all
vectors in 3-d,

Ia = aI; for all a: (2.31)

It follows that I commutes with all elements in the algebra. This is always the case
for the pseudoscalar in spaces of odd dimension. In even dimensions, the pseudoscalar
anticommutes with all vectors, as can be easily checked in 2-d. We can now express
each of our basis bivectors as the product of the pseudoscalar and a dual vector,

e1e2 = Ie3; e2e3 = Ie1; e3e1 = Ie2: (2.32)

This operation of multiplying by the pseudoscalar is called a duality transformation.

We next form the square of the pseudoscalar

I2 = e1e2e3e1e2e3 = e1e2e1e2 = �1: (2.33)

So the pseudoscalar commutes with all elements and squares to �1. It is therefore a
further candidate for a unit imaginary. In some physical applications this is the correct
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one to use, whereas for others it is one of the bivectors. These di�erent possibilities
provide us with a very rich geometric language.

Finally, we consider the product of a bivector and the pseudoscalar:

I(e1^e2) = Ie1e2e3e3 = IIe3 = �e3: (2.34)

So the result of the product of I with the bivector formed from e1 and e2 is �e3, that
is, minus the vector perpendicular to the e1^e2 plane. This a�ords a de�nition of the
vector cross product in 3-d as

a�����b = �I(a^b): (2.35)

The bold ����� symbol should not be confused with the � symbol for the commutator
product. The latter is extremely useful, whereas the vector cross product is largely
redundant now that we have the outer product available. Equation (2.35) shows how
the cross product is a bivector in disguise, the bivector being mapped to a vector by
a duality operation. It is also now clear why the product only exists in 3-d | this is
the only space for which the dual of a bivector is a vector. We will have little further
use for the cross product and will rarely employ it from now on. This means we can
also do away with the awkward distinction between axial and polar vectors. Instead
we just talk of vectors and bivectors.

The duality operation in 3-d provides an alternative way to understand the geometric
product aB of a vector and a bivector. We write B = Ib in terms of its dual vector b,
so that we now have

aB = Iab = I(a�b+ a^b): (2.36)

This demonstrates that the symmetric part of the product generates the trivector

a^B = I(a�b) = 1

2
(aB +Ba); (2.37)

whereas the antisymmetric part returns a vector

a�B = I(a^b) = 1

2
(aB �Ba): (2.38)

This justi�es the de�nition of the inner and outer products between a vector and
bivector. As with pairs of vectors, these combine to return the geometric product,

aB = a�B + a^B: (2.39)

3 Further De�nitions

An important operation in GA is that of reversing the order of vectors in any product.
This is denoted with a dagger, Ay. Scalars and vectors are invariant under reversion,
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but bivectors change sign,

(e1e2)
y = e2e1 = �e1e2: (3.1)

Similarly, we see that

Iy = e3e2e1 = e1e3e2 = �e1e2e3 = �I: (3.2)

A general multivector in 3-d can be written

M = �+ a+B + �I: (3.3)

From the above we see that

My = �+ a�B � �I: (3.4)

The choice of the dagger symbol re
ects the fact that, if one chooses to adopt a Her-
mitian matrix representation for the vector generators, the reverse operation corres-
ponds to the Hermitian adjoint for matrices.

It is also useful to adopt the operator ordering convention that, in the absence of
brackets, inner and outer products are performed before geometric products. This cleans
up expressions by enabling us to remove unnecessary brackets. For example, on the
right-hand side of Eq. (2.35) we can now write

a�����b = �I a^b: (3.5)

We have already introduced the h ir notation for projecting onto the terms of grade-r.
For the operation of projecting onto the scalar component we usually drop the subscript
0 and write

hABi = hABi0 (3.6)

for the scalar part of the product of two arbitrary multivectors. The scalar product is
always symmetric

hABi = hBAi: (3.7)

It follows that

hA � � �BCi = hCA � � �Bi: (3.8)

This cyclic reordering property is very useful in practice.
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aa0

m

ak

a?

Hyperplane

a = a? + ak
a0 = a? � ak

Figure 5: A re
ection in the plane perpendicular to m.

4 Re
ections

Suppose that we re
ect the vector a in the (hyper)plane orthogonal to some unit
vector m (m2 = 1). The component of a parallel to m changes sign, whereas the
perpendicular component is unchanged. The parallel component is the projection onto
m:

ak = a�mm: (4.1)

(NB operator ordering convention in force here.) The perpendicular component is the
remainder

a? = a� a�mm = (am� a�m)m = a^mm: (4.2)

This shows how the wedge product projects onto the components perpendicular to a
vector. The result of the re
ection is therefore

a0 = a? � ak = �a�mm + a^mm

= �(m�a+m^a)m = �mam: (4.3)

This remarkably compact formula only arises in geometric algebra. We can start to
see now that geometric products arise naturally when operating on vectors.

It is simple to check that our formula has the required properties. For any vector �m
in the m direction we have

�m(�m)m = ��mmm = ��m (4.4)
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and so �m is re
ected. Similarly, for any vector n perpendicular to m we have

�m(n)m = �mnm = nmm = n (4.5)

and so n is una�ected. We can also give a simple proof that inner products are
unchanged by re
ections,

a0 �b0 = (�mam)�(�mbm) = hmammbmi
= hmabmi = hmmabi = a�b: (4.6)

We next construct the transformation law for the bivector a ^ b under re
ection of
both a and b. We obtain

a0^b0 = (�mam)^(�mbm) = 1

2
(mammbm�mbmmam)

= 1

2
m(ab� ba)m =ma^bm: (4.7)

We recover essentially the same law, but with a crucial sign di�erence. Bivectors do not
transform as vectors under re
ections. This is the reason for the confusing distinction
between polar and axial vectors in 3-d. Axial vectors invariably arise as the result
of the cross product. They are really bivectors and should be treated as such. This
also explains why 19th century mathematicians were confused by the transformation
properties of the quaternions. They were expected to transform as vectors under
re
ections, but actually transform as bivectors (i.e. with the opposite sign).

5 Rotations

For many years, Hamilton struggled with the problem of �nding a compact represent-
ation for rotations in 3-d. His goal was to generalise to representation of 2-d rotations
as a complex phase change. The key to �nding the correct formula is to use that result
that a rotation in the plane generated by two unit vectors m and n is achieved by suc-
cessive re
ections in the (hyper)planes perpendicular to m and n. This is illustrated
in Fig. 6. It is clear that any component of a outside the m^n plane is untouched. It
is also a simple exercise in trigonometry to con�rm that the angle between the initial
vector a and the �nal vector a00 is twice the angle between m and n. The result of
the successive re
ections is therefore to rotate through 2� in the m^n plane, where
m�n = cos(�).

So how does this look in GA?

a0 = �mam (5.1)

a00 = �na0n = �n(�mam)n = nmamn (5.2)
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aa0

a00

m

n

m^n

Figure 6: A Rotation from 2 Re
ections. a0 is the result of re
ecting a in the plane
perpendicular to m. a00 is the result of re
ecting a0 in the plane perpendicular to n.

This is beginning to look very simple! We de�ne the rotor R by

R = nm: (5.3)

Note the geometric product here! We can now write a rotation as

a 7! RaRy (5.4)

Incredibly, this formula works for any grade of multivector, in any dimension, of any
signature! To make contact with the 2-d result we �rst expand R as

R = nm = n�m+ n^m = cos(�) + n^m: (5.5)

So what is the magnitude of the bivector n^m?

(n^m)�(n^m) = hn^mn^mi = hnmn^mi
= n�[m�(n^m)] = n�(m cos(�)� n)

= cos2(�)� 1 = � sin2(�): (5.6)

We therefore de�ne a unit bivector in the m^n plane by

B̂ =m^n= sin(�); B̂2 = �1: (5.7)

This choice of orientation (m^n rather than n^m) ensures that the bivector has the
same orientation as the rotation, as can be seen in Fig. 6.
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In terms of the bivector B̂ we now have

R = cos(�)� B̂ sin(�): (5.8)

Look familiar? This is nothing else than the polar decomposition of a complex number,
with the unit imaginary replaced by the unit bivector B̂. We can therefore write

R = exp(�B̂�): (5.9)

The exponential here is de�ned in terms of its power series in the normal way. It is
possible to show that this series is absolutely convergent for any multivector argument.
(Exponentiating a multivector is essentially the same as exponentiating a matrix).

Now recall that our formula was for a rotation through 2�. If we want to rotate through
�, the appropriate rotor is

R = expf�B̂�=2g (5.10)

which gives us the �nal formula

a 7! e�B̂�=2 a eB̂�=2 : (5.11)

This describes a rotation through � in the B̂ plane, with orientation speci�ed by B̂.
The GA description forces us to think of rotations taking place in a plane as opposed
to about an axis. The latter is an entirely 3-d concept, whereas the concept of a plane
is quite general.

Rotors are one of the fundamental concepts in geometric algebra. Since the rotor R is
a geometric product of two unit vectors, we see immediately that

RRy = nm(nm)y = nmmn = 1 = RyR: (5.12)

This provides a quick proof that our formula has the correct property of preserving
lengths and angles,

a0 �b0 = (RaRy)�(RbRy) = hRaRyRbRyi = hRabRyi = a�b: (5.13)

Now suppose that the two vectors forming the bivector B = a^b are both rotated.
What is the expression for the resulting bivector? To �nd this we form

B0 = a0^b0 = 1

2
(a0b0 � b0a0) = 1

2
(RaRyRbRy �RbRyRaRy)

= 1

2
(RabRy �RbaRy) = 1

2
R(ab� ba)Ry = Ra^bRy = RBRy: (5.14)

Bivectors are rotated using precisely the same formula as vectors! The same turns out
to be true for all geometric objects represented by multivectors. This is one of the
most attractive features of geometric algebra.
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6 Properties of Rotors

Let us consider the problem of rotating a unit vector n1 into another unit vector n2 in
3-d space, where the angle between these two vectors in �. What is the rotor R which
performs such a rotation? If R is the rotor we require then it must satisfy n2 = Rn1R

y

which, under multiplication on the right by R gives,

n2R = Rn1: (6.1)

Now consider the quantity (1 + n2n1). Since n1
2 = n2

2 = 1, we see that

n2(1 + n2n1) = n2 + n1 (6.2)

(1 + n2n1)n1 = n1 + n2 (6.3)

so equation (6.1) is satis�ed if R / (1 + n2n1). It remains simply to normalize R so
that it satis�es RRy = 1. If R = �(1 + n2n1) we obtain

RRy = �2(1 + n2n1)(1 + n1n2) = 2�2(1 + n2 �n1); (6.4)

which gives us the following formula for R:

R =
1 + n2n1p
2(1 + n2�n1)

: (6.5)

We can recover our earlier expression by �rst noting thatp
2(1 + n2�n1) = 2 cos(�=2): (6.6)

The rotor R can be now written as

R = cos(�=2) +
n2^n1

jn2^n1j sin(�=2) = exp

�
��
2

n1^n2

jn2^n1j
�
; (6.7)

where jn2 ^ n1j is the magnitude of the bivector n2 ^ n1, de�ned by

jn2 ^ n1j =
�
(n2^n1)�(n1^n2)

�
1=2

: (6.8)

In this way the rotor is again written as the exponential of a bivector, recovering
Eq. (5.9). An alternative representation, available only in 3-d, is to introduce the dual
vector n and write the rotor as

R = exp

�
�I �

2
n

�
= cos(�=2)� In sin(�=2): (6.9)

This generates a rotation of � radians about an axis parallel to the unit vector n in a
right-handed screw sense. (This is precisely how 3-D rotations are represented in the
quaternion algebra.)
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6.1 Composition Law

A feature of the rotor treatment of rotations is the ease with which rotations can now
be combined. Suppose that the rotor R1 takes the vector a to the vector b,

b = R1aR
y
1
: (6.10)

If the vector b is now rotated by a second rotor R2 to the vector c, we have

c = R2bR
y
2
; (6.11)

and therefore

c = (R2R1)a(R2R1)
y: (6.12)

The combined rotation is therefore generated by the composite rotor

R = R2R1: (6.13)

This is the group composition law for rotors. It is straightforward to check that this
results in a new rotor.

This composition rule has two important features. The �rst is that in �nding the
composite rotor a maximum of 16 multiplications is required. This compares favourably
with the 27 required when multiplying together 2 rotation matrices. The second is that
we have far better control over numerical errors when combining rotors. If numerical
errors do arise, the worst that can happen is that the rotor is no longer normalised
exactly to 1. This is easily recti�ed by rescaling. No such simple method is available
with rotation matrices. If numerical errors mean that the matrix is no longer orthogonal
there is no simple method to recover the \nearest" orthogonal matrix.

6.2 Frames and Reciprocals

A frequently-encountered problem is how to �nd the rotor given two arbitrary sets
of vectors, known to be related my a rotation. To solve this problem we must �rst
introduce the notion of a reciprocal frame. Given a set of linearly independent vectors
feig (where now no assumption of orthonormality is made), the reciprocal frame, feig,
is de�ned such that

ei�ej = Æij: (6.14)

We construct such a reciprocal frame in n-dimensions as follows:

ej = (�1)j�1e1^e2^� � �^�ej^� � �^en I�1e (6.15)
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where Ie = e1 ^ e2 ^ � � � ^ en and �ej indicates that ej is missing from the product. In
three dimensions this is a very simple operation and the reciprocal frame vectors for a
linearly independent set of vectors feig are as follows:

e1 =
1

�
Ie2^e3

e2 =
1

�
Ie3^e1 (6.16)

e3 =
1

�
Ie1^e2;

where I� = e3^e2^e1.

A vector a can be expanded in either frame as follows (summation convention in force)

a = aje
j � (a�ej)ej (6.17)

a = ajej � (a�ej)ej: (6.18)

The identi�cation of aj with a � ej is obtained by dotting the equation a = aje
j with

ei. Similarly, the identi�cation of aj with a � ej is obtained by dotting a = ajej with
ei. So, given a general frame and a vector, the reciprocal frame is needed to construct
the components of the vector in the chosen frame. Of course, for orthonormal frames
there is no distinction between the frame and its reciprocal.

Suppose now that we have two sets of vectors in 3-d (not necessarily orthonormal) fekg
and ff kg which we know are related by a rotation. We hence know that

f k = RekR
y (6.19)

and we seek a simple expression for the rotor R. As we are in 3-d, we can write

R = e�B=2 and Ry = eB=2 = cos(jBj=2) + sin(jBj=2)B=jBj: (6.20)

We therefore �nd that

ekR
yek = ek[cos(jBj=2) + sin(jBj=2)B=jBj]ek

= 3 cos(jBj=2)� sin(jBj=2)B=jBj
= 4 cos(jBj=2)�Ry: (6.21)

We now form

f ke
k = RekR

yek = 4 cos(jBj=2)R� 1: (6.22)

It follows that R is a scalar multiple of 1 + f ke
k. We therefore establish the simple

formula

R =
1 + f ke

k

j1 + f ke
kj =

 p
(  y)

(6.23)

where  = 1 + f ke
k. This neat formula recovers the rotor directly from the frame

vectors. It works in all cases except when the rotation is through 180o, in which case
 = 0. This is easily handled as a special case.
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6.3 Rotation Matrices

The conventional way to treat rotations is through the application of 3� 3 orthogonal
matrices, which are applied to the coordinates of a vector in a given �xed orthonormal
frame. If we denote this frame by fekg we have a = akek and

a0 = RaRy = a0kek: (6.24)

The components of the rotated vector a0 are related to the original components by

a0i = Rijaj (6.25)

where R is an orthogonal matrix. From the preceding we have

a0i = ei �a0 = ei �(RaRy) = ei �(RejRy)aj: (6.26)

It follows that the matrix components are given by

Rij = ei�(RejRy): (6.27)

As expected, the components depend quadratically on the rotor R. It follows that R
and �R encode the same rotation. Even for the simplest rotations, one can see that
the rotor encoding is signi�cantly more compact than the matrix expression.

Given a rotation matrix Rij one can recover the rotor eÆciently by adapting Eq. (6.23).
We de�ne

 = 1 + Rijeiej = 1 +RejR
yej (6.28)

so that the rotor is given by

R =
 p
(  y)

: (6.29)

This result makes it easy to convert from the standard formulation to the geometric
algebra framework.

6.4 Euler Angles

The Standard Euler angle formulation of rotations is to express any rotation as a
combination of 3 rotations:

1st: rotate � about the e3 axis
2nd: rotate � about the rotated e1 axis
3rd: rotate  about the rotated e3 axis
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In traditional accounts this is involves de�ning a set of 3 rotation matrices

A1 =

0
@ cos � sin� 0
� sin� cos � 0

0 0 1

1
A ; A2 =

0
@1 0 0
0 cos � sin �
0 � sin � cos �

1
A

A3 =

0
@ cos sin 0
� sin cos 0

0 0 1

1
A (6.30)

we are then told to apply these matrices in reverse order to form

A = A1A2A3 (6.31)

so that the coordinates transform as x0 = Ax. This matrix ordering is often con-
fusing and is justi�ed using arguments based on mixtures of \active" and \passive"
transformations. It is therefore instructive to see how this looks in geometric algebra.

We start by de�ning the rotor

R1 = exp
��I �

2
e3
�
; (6.32)

which generates a rotation about the e3 axis. Next we need a rotation about the
rotated e1 axis, which is generated by

R2 = exp
��I �

2
e0
1

�
(6.33)

where e0
1
= R1e1R

y
1
. One can see, then, that

R2 = R1 exp
��I �

2
e1
�
Ry
1
: (6.34)

Finally, we rotate about the new 3-axis, which requires the rotor

R3 = exp
��I 

2
e00
3

�
(6.35)

where e00
3
= R2R1e3R

y
1
Ry
2
. In this case the rotor can be written as

R3 = R2R1 exp
��I  

2
e3
�
Ry
1
Ry
2
: (6.36)

Now forming the combined rotor R we �nd that

R = R3R2R1 = R2R1 exp
��I 

2
e3
�
Ry
1
Ry
2
R2R1

= R1 exp
��I �

2
e1
�
Ry
1
R1 exp

��I 
2
e3
�

= exp
��I �

2
e3
�
exp
��I �

2
e1
�
exp
��I 

2
e3
�
: (6.37)
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This fully explains the order in which the rotations are applied, and avoids all complic-
ations connected with changing frames midway through the calculation, or attempting
to distinguish rotations of coordinates, rotations of coordinate axes, and (\active")
rotations of vectors.

Despite the clean form of the Euler angle formalism in geometric algebra, this is rarely
an optimal encoding for rotations. Given an arbitrary rotor, its decomposition into
Euler angles is not straightforward, and the product formula is equally messy. In
practice it is best to either work directly with the rotor R, or with its bivector generator
B, R = exp(�B=2).

6.5 Interpolating Rotors

Rotors are elements of a four-dimensional space, normalised to 1. They can be rep-
resented as points on a 3-sphere | the set of unit vectors in four dimensions. This is
the rotor group manifold. At any point on the manifold, the tangent space is three-
dimensional. This is the analog of the tangent plane to a sphere in three dimensions.
Rotors therefore require three parameters to specify them uniquely. The simplest choice
of parameters is directly in terms of the bivector generators, with

jB2j � �: (6.38)

The rotors R and �R generate the same rotation, because of their double-sided action.
It follows that the rotation group manifold is more complicated than the rotor group
manifold | it is a projective 3-sphere with points R and �R identi�ed. This is one
reason why it is usually easier to work with rotors.

Suppose we are given two estimates of a rotation, R0 and R1, how do we �nd the
mid-point? With rotors this is remarkably easy! Suppose that the rotors are R0 and
R1. We �rst make sure they have the smallest angle between them in four dimensions.
This is done by ensuring that

hR0R
y
1
i = cos � > 0: (6.39)

If this inequality is not satis�ed, then the sign of one of the rotors should be 
ipped.
The `shortest' path between the rotors on the group manifold is de�ned by

R(�) = R0 exp(�B); (6.40)

where

R(0) = R0; R(1) = R1: (6.41)

It follows that we can �nd B from

exp(B) = Ry
0
R1: (6.42)
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The path de�ned by exp(�B) is an invariant construct. If both endpoints are trans-
formed, the path transforms in the same way. The midpoint is

R1=2 = R0 exp(B=2); (6.43)

which therefore generates the midpoint rotation. This is quite general | it works for
any rotor group (or any Lie group). For rotations in three dimensions we can do even
better. R0 and R1 can be viewed as two unit vectors in a four-dimensional space. The
path exp(�B) lies in the plane speci�ed by these vectors: the rotors can therefore be
treated as unit vectors in four dimensions. The path between them lies entirely in the
plane of the two rotors, and therefore de�nes a segment of a circle.

The rotor path between R0 and R1 can be written as

R(�) = R0

�
cos�� + sin�� B̂

�
; (6.44)

where we have used B = �B̂. But we know that

exp(B) = cos � + sin � B̂ = Ry
0
R1: (6.45)

It follows that

R(�) =
R0

sin �

�
sin � cos�� + sin��(Ry

0
R1 � cos �)

�
(6.46)

=
1

sin �

�
sin(1� �)� R0 + sin�� R1

�
; (6.47)

which satis�es R(�)Ry(�) = 1 for all �. The midpoint rotor is therefore simply

R1=2 =
sin(�=2)

sin �
(R0 +R1): (6.48)

This gives us a remarkably simple prescription for �nding the midpoint: add the rotors
and normalise the result. By comparison, the equivalent matrix is quadratic in R, and
so is much more diÆcult to express in terms of the two endpoint rotation matrices.

Suppose now that we have a number of estimates for a rotation and wanted to �nd the
average. Again the answer is simple. First one chooses the sign of the rotors so that
they are all in the `closest' con�guration. This will normally be easy if the rotations
are all roughly equal. If some of the rotations are quite di�erent then one might have
to search around for the closest con�guration, though in these cases the average of such
rotations is not a useful concept. Once one has all of the rotors chosen, one simply
adds them up and normalises the result to obtain the average. This sort of calculation
can be useful in computer vision problems where one has a number of estimates of the
relative rotations between cameras, and their average is required.

The lesson here is that problems involving rotations can be simpli�ed by working with
rotors and relaxing the normalisation criteria. This enables us to work in a four-
dimensional linear space and is the basis for a simpli�ed calculus for rotations.
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7 Di�erentiation for multivector quantities

Here we give a brief discussion of the process of di�erentiating with respect to any
multivector. Having available such a calculus means that, in practice, it is easy to
take derivatives with respect to rotors and vectors and this makes many least-squares
minimization problems much simpler to deal with. In computer vision and motion
analysis one tends to draw frequently on an approach which minimizes some expression
in order to �nd the relevant rotations and translations { this is a standard technique
for any estimation problem in the presence of uncertainty.

If X is a mixed-grade multivector, X =
P

rXr, and F (X) is a general multivector-
valued function of X, then the derivative of F in the A `direction' is written as A �
@XF (X) (here we use � to denote the scalar part of the product of two multivectors,
i.e. A �B � hABi), and is de�ned as

A � @XF (X) � lim
�!0

F (X + �A)� F (X)

�
: (7.1)

For the limit on the right hand side to make sense A must contain only grades which
are contained in X and no others. If X contains no terms of grade-r and Ar is a
homogeneous multivector, then we de�ne Ar �@X = 0. This de�nition of the derivative
also ensures that the operator A � @X is a scalar operator and satis�es all of the usual
partial derivative properties. We can now use the above de�nition of the directional
derivative to formulate a general expression for the multivector derivative @X without
reference to one particular direction. This is accomplished by introducing an arbitrary
frame fejg and extending this to a basis (vectors, bivectors, etc..) for the entire algebra,
feJg. Then @X is de�ned as

@X �
X
J

eJ (eJ � @X); (7.2)

where feJg is an extended basis built out of the reciprocal frame. The directional
derivative, eJ � @X, is only non-zero when eJ is one of the grades contained in X (as
previously discussed) so that @X inherits the multivector properties of its argument
X. Although we have here de�ned the multivector derivative using an extended basis,
it should be noted that the sum over all the basis ensures that @X is independent of
the choice of fejg and so all of the properties of @X can be formulated in a frame-free
manner. One of the most useful results concerning multivector derivatives is

@XhXBi = B; (7.3)

where we assume that B and X contain the same grades. (If the grades are di�erent
then only the terms in B which share grades with X are produced on the right.) From
this basic result one can also see that

@XhXyBi = @XhXByi = By: (7.4)
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7.1 Rotor Calculus

Any function of a rotation can be viewed as taking its values over the group manifold.
In most of what follows we are interested in scalar functions, though there is no reason
to restrict to this case. The derivative of the function with respect to a rotor de�nes a
vector in the tangent space at each point on the group manifold. The vector points in
the direction of steepest increase of the function. This can all be made mathematically
rigorous and is the subject of di�erential geometry. The problem is that much o�
this is over-complicated for the relatively simple minimisation problems encountered
in computer vision. Working intrinsically on the group manifold involves introducing
local coordinates (such as the Euler angles) and di�erentiating with respect to each
of these in turn. The resulting calculations can be long and messy and often hide the
simplicity of the answer.

Geometric algebra provides us with a more elegant and simpler alternative. We relax
the rotor normalisation constraint and replace R by  | a general element of the even
subalgebra. It is straightforward to show that the derivative operator de�ned above
reduces to a simple form if we �rst decompose  in terms of the feig basis as

 =  0 +

3X
k=1

 kIek (7.5)

where the f 0; : : : ;  3g are a set of scalar components. The multivector derivative then
becomes

@ =
@

@ 0
�

3X
k=1

Iek
@

@ k
: (7.6)

This derivative is independent of the chosen frame. It satis�es the basic result

@ h Ai = A (7.7)

where A is an even-grade multivector (independent of  ). All further results for @ are
built up from this basic result and Leibniz' rule for the derivative of a product.

The basic trick now is to re-write a rotation as

RaRy =  a �1: (7.8)

This works because any even multivector  can be written as

 = �1=2R (7.9)

where R is a rotor, � =   y and � = 0 if and only if  = 0. The inverse of  is then

 �1 = ��1=2Ry (7.10)
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so that

  �1 = RRy = 1: (7.11)

The equality of equation (7.8) follows immediately. If one imagines a function over a
sphere in three dimensions, one can extend this to a function over all space by attaching
the same value to all points on each line from the origin. The extension R 7!  does
precisely this, but in a four dimensional space.

We are now able to di�erentiate functions of the rotation quite simply. The typical
application is to a scalar of the type

(RaRy) � b = hRaRybi = h a �1bi: (7.12)

To di�erentiate this we need a result for the derivative of the inverse of a multivector.
We start by letting M be a constant multivector, and derive

0 = @ h  �1Mi =  �1M + _@ h _ �1Mi; (7.13)

where the overdots denote the scope of the derivative. It follows that

_@ h _ �1M i = � �1M: (7.14)

But in this formula we can now let M become a function of  , as only the �rst term,
 �1, is acted on by the di�erential operator. We can therefore replaceM by M �1 to
obtain the useful formula

_@ h _ �1Mi = � �1M �1: (7.15)

So, let us now consider the problem of �nding the rotor R which `most closely' rotates
the vectors fuig onto the vectors fvig, i = 1; :::; n. More precisely, we wish to �nd the
rotor R which minimizes

� =
nX
i=1

(vi �RuiR
y)2: (7.16)

Expanding � gives

� =

nX
i=1

(vi
2 � viRuiR

y �RuiR
yvi +R(ui

2)Ry)

=
nX
i=1

�
(vi

2 + ui
2)� 2hviRuiRyi

�
: (7.17)
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We now replace RuiRy with  ui �1 and di�erentiate, forming

@ �( ) = �2
nX
i=1

@ hvi ui �1i

= �2
nX
i=1

�
_@ h _ Aii+ _@ hBi

_ �1i
�
;

where Ai = ui 
�1vi and Bi = vi ui (using the cyclic reordering property). The

�rst term is easily evaluated to give Ai. To evaluate the second term we can use
equation (7.15). One can then substitute  = R and note that R�1 = Ry as RRy = 1.
We then have

@ �( ) = �2
nX
i=1

�
ui 

�1vi �  �1(vi ui) 
�1
�

= �2 �1
nX
i=1

�
( ui 

�1)vi � vi( ui 
�1)
�

= 4Ry
nX
i=1

vi^(RuiRy): (7.18)

Thus the rotor which minimizes the least-squares expression �(R) =
Pn

i=1(vi�RuiRy)2
must satisfy

nX
i=1

vi^(RuiRy) = 0: (7.19)

This is intuitively obvious { we want the R which makes ui `most parallel' to vi in the
average sense. The big advantage of the approach used here is that one never leaves
the geometric algebra of space, and the resultant bivector is evaluated in the same
space, rather than in some abstract tangent space on the group manifold. The solution
of equation (7.19) for R will utilize the linear algebra framework of geometric algebra
and is described in the following section.

8 Linear algebra

Geometric algebra is a very natural framework for the study of linear functions and non-
orthonormal frames. Here we will give a brief account of how geometric algebra deals
with linear algebra; we do this since many computer vision and engineering problems
can be formulated as problems in linear algebra.
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If we take a linear function F(a) which maps vectors to vectors in the same space then
it is possible to extend F to act linearly on multivectors. This extension of F is given
by

F(a1^a2^: : :^ar) = F(a1)^F(a2)^: : :^F(ar): (8.1)

The extended function preserves grade since F maps an r-grade multivector to another
r-grade multivector. The adjoint to F is written as �F and de�ned by

�F(a) = eihF(ei)ai; (8.2)

where, as before, feig is an arbitrary frame and feig is its reciprocal frame. This
de�nition ensures that

a�F(b) = b��F(a); (8.3)

so the adjoint represents the function corresponding to the transpose of the matrix
which is represented by F. If F = �F the function is said to be self-adjoint, or symmetric.
Symmetric functions satisfy

ei^F(ei) = 0; (8.4)

and this ensures that the any matrix representing F is symmetric. Similarly, if F = ��F
then the function is antisymmetric.

As an illustration of the use of linear algebra techniques, we will discuss the solution
of equation (7.19). We �rst re-write the equation as

ei^
"

nX
i=1

R
�
(ei�vi)ui

�
Ry

#
= 0: (8.5)

We now introduce a function F de�ned by

F(a) =
nX
i=1

(a�vi)ui: (8.6)

Equation (8.5) can then be written as

ei^RF(ei)Ry = 0: (8.7)

Let us now de�ne another function R mapping vectors onto vectors such that R(a) =
RaRy. With these de�nitions equation (8.7) takes the form

ei^RF(ei) = 0; (8.8)
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which tells us that RF is symmetric. We now perform a singular-value decomposition
(SVD) on F, which enables us to write

F = SD (8.9)

where S is an orthogonal transformation and D is symmetric. Comparing with (8.8)
we see that a solution is provided by

R = S�1 = �S: (8.10)

The rotation R (and hence the rotor R) is therefore found directly from the SVD of
the function F.

9 Elasticity

The subject of the behaviour of solids under applied stress is one of the oldest in physics.
Despite its great history, the subject is still rapidly evolving, driven by advances in
engineering, and the advent of new materials with unusual properties. Here we review
how the combination of linear algebra and geometric calculus is applied to the subject
of elasticity. We show how arbitrary, nonlinear strains can be handled, before reducing
to the simpler linearised theory. We also look at the behaviour of an elastic �lament,
which is the simplest system to extend to the nonlinear regime.

9.1 The Displacement Field

The central idea in treating elastic deformations is essentially the same as that used in
rigid body dynamics. We imagine an undeformed, reference con�guration and denote
a position in this with the vector x. Each point in the reference con�guration maps
to a point y in the physical con�guration. The map between these is a function of
position and time, which we write as

y = f(x; t): (9.1)

(See Figure 7.) Now consider two points x and x+ �a, close together in the reference
con�guration. The distance between these is

jx+ �a� xj = �jaj: (9.2)

The images of these two points in space are, dropping the time dependence, f(x) and
f(x+ �a). The vector between these is, to �rst order in �,

f(x+ �a)� f(x) = �a�rf(x): (9.3)
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x

x+ �a

f(x)

f(x+ �a)

Figure 7: An Elastic Deformation. The nonlinear function f(x) maps a point in the
reference con�guration to a point in space. The directional derivatives of f(x) tell us
about the strains in the material.

The directional derivatives of f(x; t) therefore contain information about the local
distortion of the material. This information is summarised in the linear function

f(a) = f(a;x; t) = a�rf(x; t): (9.4)

This is a time-dependent linear function of a, de�ned for each point x in the reference
con�guration. One way to think of the function f(a) is as follows: suppose that the
material is �lled with a series of curves (these could be realised physically using dyes
in the formation process, like in a multicoloured eraser). If the tangent vector to one
of these curves in the undistorted medium is given by the vector a then, after the
distortion, this vector transforms to f(a).

The distance between the images of the points x and x+ �a is now

�jf(a)j = �
p
(f(a)2): (9.5)

The f(a)2 term can be written as

f(a)2 = hf(a)f(a)i = ha�ff(a)i = a��ff(a); (9.6)

where �f is the adjoint (transpose) of the linear function f. The function g = �ff is
therefore responsible for the change in distance between points in the undistorted and
distorted medium. This must therefore be directly related to the strain tensor for the
solid. The strain in the undistorted medium should be zero, which corresponds to f

being the identity. A suitable de�nition for the strain tensor E(a) is therefore
E(a) = 1

2
(g(a)� a): (9.7)
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The factor of 1=2 is included so that the strain tensor has the correct linearisation
properties.

An alternative de�nition of the strain tensor, which has a number of features to re-
commend it, is

E(a) = 1

2
ln g(a): (9.8)

To date, this alternative de�nition has not been seriously considered. One advantage
of this choice is that

Tr(E) = ln(det f) (9.9)

so the trace of the strain tensor is directly related to the volume scale factor. Which
of the possible de�nitions of the strain tensor should be used can ultimately only be
settled by the accuracy of the predictions of models based on the di�erent choices.

The strain tensor is symmetric and tells us about the strains in the distorted body.
The function E(a) takes as its argument a vector in the �xed, undistorted medium, and
it returns a vector in the same medium. As with rigid body dynamics, this turns out
to be the easiest way to work. The function g(a) is symmetric, which ensures that any
overall rotational component of the strain has been factored out. g(a) is also positive
de�nite, so its properties are most naturally discussed in terms of its eigenvectors.
These are the directions in the reference body which are stretched, but not rotated, for
a given strain.

9.2 Stress and the Balance Equations

The contact force between two surfaces in the medium is a function of the normal to
the surface (and position and time). Cauchy showed that, given suitable continuity
conditions, the force must be a linear function of the normal. We write this as T (n).
Since T (�n) = �T (n) it follows that Newton's third law is immediately satis�ed.
The function T (n) takes as its argument a vector in the reference con�guration, and
returns a vector in the material body (see Fig. 8). We need a means to pull this back
to the reference con�guration, so that the stress can be related to the strain there. To
see how to do this we need to consider the balance equations (i.e. force laws) in the
material body.

The total force on an element of volume V is found by integrating T (n) over the surface
of the element, so we have Z

�
@2y

@t2
dV =

I
T (ds); (9.10)
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n
T (n)

Figure 8: The Stress. The stress tensor T (n) returns the force in the material body
over the plane with normal n, in the reference body.

where � = �(x) is the density in the undistorted medium. A simple application of the
divergence theorem converts the surface integral to a volume integral,I

T (ds) =

Z
T (
 

r) dV (9.11)

from which we can read o� the dynamical equation

�
@2y

@t2
= T (

 

r): (9.12)

The second balance equation is found by considering the total couple on a volume
element, and relating this to the change in angular momentum. The total couple
about the point y

0
is

M =

I
(y � y

0
)^T (ds): (9.13)

This must be equated with the change in angular momentum,

@

@t

Z
�(y � y

0
)^ _y dV =

Z
(y � y

0
)^T (

 

r) dV: (9.14)

Applying the divergence theorem again, we �nd that angular momentum balance is
satis�ed provided

@iy^T (ei) = f(ei)^T (ei) = 0: (9.15)

It follows that the tensor T (n) is symmetric, where

T (n) = f�1T (n): (9.16)

This is the (�rst) Piola-Kircho� stress tensor. T (n) is a symmetric tensor de�ned
entirely in the reference con�guration, since the f�1 term maps the vector T (n) back
to the reference copy. The Piola-Kircho� tensor is the one that we must relate to the
strain tensor, via the constitutive relations of the material.
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9.3 Constitutive Equations

The strain tensor can, in principle, be a quite general function of the applied stresses.
Complications can include a lack of homogeneity and isotropy, viscosity, thermal and
chemical properties, and a dependence on the history of the body. For a wide range
of applications, however, we can restrict to the simplest case of a linear, isotropic,
homogeneous (LIH) body. In these the stresses and strains are related linearly by just
two parameters, the bulk modulus B and the shear modulus G. For LIH media the
relation between the applied stress T (a) and the strain E(a) is

T (a) = 2GE(a) + (B � 2

3
G)Tr(E)a: (9.17)

The bulk modulus B describes how the body responds to isotropic pressure, as is the
case when the body is immersed in a liquid. The applied stress is then a uniform
pressure P in all directions, so we have

T (a) = �Pa: (9.18)

The sign is negative, because the force is a compression, rather than a stretch. Taking
the trace of both sides of equation (9.17) gives

�3P = 3BTr(E): (9.19)

The distortion in the medium will be given by

f(x) = �x+ x0; (9.20)

where x0 is the vector from the origin to its image in the physical con�guration, and
� is the scale factor. It follows that

f(a) = �a; (9.21)

and hence Tr(E) = 3(�2 � 1)=2. The bulk modulus is then given by

B = � 2P

3(�2 � 1)
: (9.22)

If we now linearise by setting � = 1 + �, we recover the familiar result that

B = �P
3�

= �P V

�V
(9.23)

where V is the volume. Since the force is a compression, the change in volume �V will
be negative.

When a stress is applied along a single direction, the body will respond by stretching
along the direction of the applied force, and contracting in the other two directions.
The relative sizes of these e�ects is controlled by the shear modulus G | the second
of the two main elastic parameters. Given a set of constitutive relations and the
balance equations, one has enough information to compute the evolution of the system.
The resulting equations are, in general, highly complicated and nonlinear, even if the
material itself is linear. For this reason it is usual to work in the linear regime of small
deformations whenever possible.
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9.4 Linearised Elasticity

Suppose that the elastic deformation can be written as

x0 = f(x) = x+ x0 + � (9.24)

where � is a vector �eld. The directional derivatives of this are denoted with an
underbar, so

�(a) = a�r�: (9.25)

Working to �rst order, the strain tensor becomes

E(a) = 1

2

�
�(a) + �(a)

�
: (9.26)

The stress tensor T (a) gives the applied force over the surface perpendicular to a in
the reference con�guration. In the linearised theory, this is the same as the force in
the material body (to �rst order). Assuming an LIH material, we then recover the
dynamical equations

Gr2�+ (B + 1

3
G)rr�� = �

@2�

@t2
: (9.27)

For many applications we assume a harmonic time variation cos(!t), for which we
recover the vector Helmholtz equation,

v2lrr��+ v2tr�(r^�) + !2� = 0: (9.28)

Here the equation has been expressed in terms of longitudinal and transverse sound
speeds vl and vt, given by

v2l =
B + 4

3
G

�
; v2t =

G

�
: (9.29)

The vector Helmholtz equation is used to study many phenomena, ranging from oscil-
lations of an elastic sphere to the propagation of waves created by an earthquake.

9.5 The Elastic Filament

We now treat the bending and twisting of an elastic �lament under static loads. Sup-
pose that the �lament is described by the curve x(�). We will choose � to be the
aÆne parameter along the curve, so that x0 = @�x is a unit vector. This vector can be
identi�ed with the third vector of an orthonormal frame,

x0 = f
3
= R(�)e3R

y(�): (9.30)
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The remaining two vectors then determine two directions perpendicular to the �lament,
and can be used to describe any internal twisting in the �lament. With this approach,
both the bending and twisting of the �lament are described in the single equation for
the rotor R.

A thin beam or �lament has sti�ness to bending. When it is bent, a bending moment
(couple) is set up which is linearly related to the curvature. In terms of the two
principal directions in the �lament, the appropriate formula for the bending moment
is

M =
Y I

R
; (9.31)

where Y is Young's modulus, I is the relevant principal moment of area, and R is the
radius of curvature in the plane of the bending. The radius of curvature is determined
by the magnitude of the projection of the vector f 0

3
into the relevant plane. So the

radius of curvature in the f
1
f
3
plane, for example, is given by

1

R1

= jf 0
3
�(f

1
f
3
)f

3
f
1
j = jf

1
�f 0

3
j: (9.32)

To compute f 0
3
we �rst need to establish an important result for the derivative of a

rotor. Rotors are normalised to unity, so RRy = 1. Di�erentiating this, we obtain

R0Ry +RRy
0
= 0: (9.33)

It follows that

R0Ry = �RRy0 = �(R0Ry)y: (9.34)

The quantity R0Ry is therefore equal to minus its reverse (and has even grade) so must
be a pure bivector. We set this equal to �
=2, so that

R0 = �1

2

R = �1

2
R
B ; (9.35)

where 
B = Ry
R. It follows that

f 0
3
= R0e3R

y +Re3R
y0 = 1

2
(�
f

3
+ f

3

) = f

3
�
; (9.36)

so the radius of curvature just picks out one coeÆcient of 
.

Equation (9.31) can correspondingly be used to �nd the curvature induced by an ap-
plied couple C. With C and 
 given in terms of components by

C =
X
k

ckIf k; 
 =
X
k

!kIfk; (9.37)
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we �nd that the curvature and the couple are related by

c1 = Y i1!1; c2 = Y i2!2; (9.38)

where i1 is the moment of area measured perpendicular to the f
1
direction.

In addition to its sti�ness to bending, the �lament has a sti�ness to torsion. For the
case of elastic behaviour, the twist in the f

1
f
2
plane is proportional to the applied

torque, and we have

c3 = Gi3f
0
1
�f

2
= Gi3!3: (9.39)

The applied couple C and the `curvature bivectors' 
 and 
B are therefore related by

C = Y (i1!1 If1
+ i2!2 If2

) +Gi3!3 If3
= RI(
B)Ry; (9.40)

which de�nes the linear function I (which maps bivectors to bivectors). We can invert
this relation to give


B = I�1(RyCR); (9.41)

which expresses the curvature bivector 
B in terms of the applied couple C and the
elastic constants. The full set of equations are now (9.30) and (9.41), together with
the rotor equation

dR

d�
= �1

2
R(
B + 
0); (9.42)

where the bivector 
0 expresses the natural shape of the �lament.

An advantage of this set of equations is that locally small distortions of the �lament
can be allowed to build up into large, global deviations. An interesting simple case is
that of a wrench, where

C(x) = C0 + f^x; (9.43)

where C0 and f are respectively the couple and force applied at the ends. A wrench
such as this describes the general case of a light �lament loaded at its ends. Figure 9
shows the type of distortion that can result.
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Figure 9: A �lament loaded at its two ends. Two directions are shown, though there is
also considerable structure in the third. The material has i1 = i2 and a zero Poisson
ratio.
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Projective Drawing Board (PDB)

PDB is an interactive program for doing plane projective
geometry that will be used to illustrate this lecture.

PDB has been developed by
Harald Winroth and Ambjörn Naeve
as a part of Harald’s doctoral thesis work at
the Computational Vision and Active Perception
(CVAP) laboratory at KTH .

PDB is avaliable as freeware under Linux.

www.nada.kth.se/~amb/pdb-dist/linux/pdb2.5.tar.gz







Geometric algebra in n-dim Euclidean space
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2 surface regions

3 3-dim regions

length

area

volume

k k-dim  regions k-volume

... ... ...

blade
of grade

equivalence class
   of directed

equal orientation
     and



The dual of a multivector x:

  I e e e
n

= ∧ ∧ ∧
1 2

K

Dual( )x xI= −1

A pseudoscalar:  P p p p
n

= ∧ ∧ ∧
1 2

K

P PI[ ] = −1

A unit pseudoscalar:

The bracket of P:

Pseudoscalars and duality

Def:   A n-blade in  Gn  is called a pseudoscalar.

is a (n-k)-blade.A*
Note:

Notation:

If A is a k-blade, then

Dual( ) *x x=



The subspace of a blade

To every non-zero  m-blade  B b b
m

= ∧ ∧
1

KFact:

there corresponds a m-dim subspace B n⊂ V

If   e e e
m1 2

, , ,K is an ON-basis for B

then B b e e e
ik m

= ( ) ∧ ∧ ∧det
1 2

K

and if b b e
i ik kk

m=
=
∑

1
for  i = 1,…,m ,

Fact:

 B b b
m

= Linspan{ , , }
1
Kwith

= ∧ =∈Linspan{ : }b b BnV 0 .

= ( )det b e e e
ik m1 2

K .



Dual subspaces <=> orthogonal complements

If A is a non-zero  m-bladeFact: A A* = ⊥
.

We can WLOG choose an ON-basis for VnProof:

such that

A e e e
m

= λ
1 2

K
We then have

A AI* = −1

 = ± +λe e
m n1

K

which implies that

A A* = ⊥
.

 I e e e
n

=
1 2

Kand .



The join and the meet of two blades

Def:   The join of blades A and B
is a common dividend of lowest grade.

Def:   The meet of blades A and B
is a common divisor of greatest grade.

such that A BC B C= = ∧ we say that

A is a dividend of B and B is a divisor of A.

The join and meet provide a representation in geometric

algebra of the lattice algebra of subspaces of Vn
.

Given blades A and B, if there exists a blade CDef:



Join of two blades <=> sum of their subspaces

Join( , )A B A B= ∧
For two blades A and B with A B∧ ≠ 0
we can define: .

Def:

A B A B∧ = + and A B∩ = 0In this case: .

a
b

a b∧ = +a b = + ∈{ : , }Rλ µ λ µa b

0 3≠ ∈a b, VExample:

a b∩ = 0

a b∧



Meet of blades <=> intersection of subspaces

Meet( , ) ( )* *A B A B A B I≡ ∨ = ∧ .then:

Def: If blades A B, ≠ 0 and A B n+ = V

A B A B∨ = ∩In this case: .

Note: The meet product is related
to the outer product
by duality:

Dual Dual Dual( ) ( ) ( )A B A B∨ = ∧

A B I A B II A B∨( ) = ∧ = ∧− −1 1( )* * * *



Dualisation:

x x xIa * = −1
G G→*

Dual outer product:

G G G× →

�

G G G× →�
* * *

Dual outer product

x y∨

x y x y* * *( )∧ = ∨

= ∧− −(( ) ( ))xI yI I1 1



e
1

e
2

e
3

A e e I* = ∧( ) −
1 2

1

Example:

= ( )e e e e e
1 2 3 2 1

( ) = −( )1 2

3 1 2 2 1
e e e e e = e

3

B e e I* = ∧( ) −
2 3

1 = ( )e e e e e
2 3 3 2 1

( ) = e
1

A B A B I∨ = ∧( )* * = ∧( )e e e e e
3 1 1 2 3

( ) = −e
2

A* =

= B*

A

B

= − ∨A B

V3 I e e e e e e= ∧ ∧ =
1 2 3 1 2 3

,

A e e= ∧
1 2

= e e
1 2

B e e= ∧
2 3, = e e

2 3

A B A B∨ = ∩
Hence:



eye

1-dim subspace through the eye

point at infinity

horiz
on

1-d subspace parallell to the ground plane

ground planepoint

Projective geometry - historical perspective

parallell
lines

lin
e a

t in
fin

ity



P P Vn n= ( )+1

A point p is a 1-dim subspace

n-dimensional projective space Pn

= the set of non-zero subspaces of Vn+1
.

A line l is a 2-dim subspace

(spanned by a 1-blade a).

(spanned by a 2-blade B2).

p a= = ≠{ : }λ λa 0 =̇ a ˙ ,= ≠α αa 0.

l B=
2 = ≠{ : }λ λB

2
0

Let B denote the set of non-zero blades of the geometric

algebra  G(Vn+1) .

=̇ B
2 .

B� B �B Pn
.

Hence we have the mapping



a b

{ : }x x a≠ ∧ =0 0

{ : }x x a b≠ ∧ ∧ =0 0

0 3≠ ∈a b x, , V

The projective plane P2

P2

a b∧Line:



The intersection of two lines in P2

P2
A B∨

A
B

A B, ∈ {non-zero 2-blades in G3} .



p q
r

Collinear points

p q r∧ ∧ = 0
The points p, q, r are collinear

.if and only if

p q∧



P Q∨

Q
P

R

Concurrent lines

( )P Q R∨ ∧ = 0
The lines P, Q, R are concurrent

.if and only if



A b c= ∧
′ = ′ ∧ ′A b c

B c a= ∧
′ = ′ ∧ ′B c a

C a b= ∧

p A A= ∨ ′

p

q
q B B= ∨ ′

r r C C= ∨ ′
′ = ′ ∧ ′C a ba

′a

P a a= ′ ∧

b

′b

Q b b= ′ ∧

c

′c

R c c= ′ ∧

Desargues’ configuration



p q r JJ P Q R∧ ∧ ≡ ′ ∨ ∧( )

Desargues’ configuration (cont.)

Leads to:

J a b c abc I= ∧ ∧ = [ ]

′ = ′ ∧ ′ ∧ ′ = ′ ′ ′[ ]J a b c a b c I

P a a= ′ ∧

Q b b= ′ ∧

R c c= ′ ∧

p A A= ∨ ′
q B B= ∨ ′

r C C= ∨ ′

= ∧ ∨ ′ ∧ ′( ) ( )b c b c

= ∧ ∨ ′ ∧ ′( ) ( )c a c a

= ∧ ∨ ′ ∧ ′( ) ( )a b a b

= 0 if and only if = 0 if and only if
p,q,r are collinear P,Q,R are concurrent



p, q, r are collinear iff P, Q, R are concurrent.

Desargues’ theorem

P

Q

R

B

A
C

A’

C’

B’

L



Let a b c a b, , , ,′ ′ be five given points in P2

Consider the second degree polynomial given by

p x a b a b( ) (( ) ( ))= ∧ ′ ∨ ′ ∧ ∧
(( ) ( ))b x b c∧ ∨ ′ ∧ ∧
(( ) ( ))c a x a∧ ′ ∨ ∧ .

It is obvious that p a p b( ) ( )= = 0
and easy to verify that p c p a p b( ) ( ) ( )= ′ = ′ = 0

Pascal’s theorem

.

Hence: p x( ) = 0 must be the equation
of the conic on the 5 given points.

.



= ∧ ′ ∨ ′ ∧ ∧ ∧ ′ ∨ ′ ∧ ∧(( ) ( )) (( ) ( ))a b a b b a b c

(( ) ( ))c a a a∧ ′ ∨ ′ ∧

Verifying that p(a´) = 0

p a( )′ =

˙ ( )= ′ ∧ ∧ ′a b a = 0

=̇ ′ ∧a b

=̇ ′a

same point

same line



The three points of intersection of opposite sides
of a hexagon inscribed in a conic are collinear.

Pascal’s theorem (cont.)

Geometric formulation:

p c a b a b( ) (( ) ( ))′ = ∧ ′ ∨ ′ ∧ ∧
(( ) ( ))b c b c∧ ′ ∨ ′ ∧ ∧
(( ) ( ))c a c a∧ ′ ∨ ′ ∧ = 0 .

Hence, a sixth point ′c lies on this conic if and only if

which Blaise Pascal discovered in 1640, at the age of 16.
This is a property of the hexagrammum mysticum,



s

s b c b c= ∧ ′ ∨ ′ ∧( ) ( )
t c a c a= ∧ ′ ∨ ′ ∧( ) ( )

t

r a b a b= ∧ ′ ∨ ′ ∧( ) ( )

r

a
b

c

′a
′b

′c

Pascal’s theorem (cont.)

r s t∧ ∧ = 0

1

2

3

4

5

6

�1 4=

�2 5=

�3 6=



P

Q

R
R’

P’

Q’

L

Pascal’s theorem (cont.)

The three points of intersection of opposite sides
of a hexagon inscribed in a conic are collinear.



P

Q R

P’

Q’

R’

L

If the conic degenerates into two straight lines,
Pappus’ theorem emerges as a special case of Pascal’s.

Pappus’ theorem (ca 350 A.D.)



Outermorphisms

f : G G→A mapping

is called an outermorphism

if

(i)

(ii) f t t( ) = ∀ ∈t R

(iii) ∀ ∈x y, Gf x y f x f y( ) ( ) ( )∧ = ∧
(iv) f k k( )G G⊂ ∀ ≥k 0

Def:

f  is linear.



The induced outermorphism

denote a linear mapping.T : V V→Let

T  induces an outermorphism T : G G→
given by

T( )λ λ=
and linear extension.

 T a a T a T a
k k

( ) ( ) ( )
1 1
∧ ∧ = ∧ ∧K K

λ ∈ R,

Fact:

T maps the blades of VInterpretation:

T maps the vectors of V.
in accordance with how



denote a symmetric linear map,T n n: V V+ +→1 1
Let

The corresponding quadric (hyper)surface  Q  in

Q x x T x xn= ⋅ = ≠∈ +{ : ( ) , }V 1 0 0 .

The polar of the k-blade A with respect to Q

Polarization with respect to a quadric in Pn

which means that T x y x T y( ) ( )⋅ = ⋅ ∀ ∈ +x y n, V 1
.

Def:

is the (n+1-k)-blade defined by

Pn

is given by

Pol ( ) ( ) ( )*

Q
A T A T A I≡ ≡ −1

.

,



Polarization (cont.)

Pol Pol( ( )) ˙Q Q
A A=

For a blade A we have

Note:

Pol ( ) *

Q
A AI A≡ ≡−1

In this case

T id= ⇒

and polarization becomes identical to dualization.

Q x x x xn= ⋅ = ≠∈ +{ : , }V 1 0 0 .

Fact:

(i)

(ii) If A is tangent to Q
then  PolQ(A)  is tangent to Q .

If x is a point on  Q,
then  PolQ(x)  is the hyperplane

Especially:

which is tangent to Q at the point x.



x

Pol ( )
Q

x



Q

x
Pol ( )

Q
x



Q

x

Pol ( )
Q

x



x y∧ x

Q

Pol ( )
Q

y

y
Polarity with respect to a conic

The polar of the join of x and y
is the meet of the polars of x and y

P2

Pol ( )
Q

x

Pol ( )
Q

x y∧

Pol Pol( ) ( )
Q Q

x y∨

Pol Pol( ) ( )
Q Q

x y∨
=

=



Pol Pol( ) ( )
Q Q

x y∨

x

y

x y∧

Q



= ⋅ −( ( ))y T x I 1

= ∧ −x T y I( ( ) )1

y x
Q

∧ =Pol ( ) 0
i.e. the point  y  lies on the polar of the point  x

Hence:

Polar reciprocity

= ∧ −y T x I( ( ) )1

= ⋅ −( ( ))x T y I 1

Let x y n, ∈ +V 1
represent two points in Pn

.

Then we have from the symmetry of T :

y T x∧ ( )*

.= ∧x T y( )*

x y
Q

∧ =Pol ( ) 0⇔

if and only if  x  lies on the polar of  y.



1

4

2

5

3

6
6

3

2

5

1

4

Q

Brianchon’s theorem

Pascal line 
(1640)

Brianchon point
(1810)



The dual map

Let f : G G→ be linear,

and assume that

˜( ) ( )f x f xI I= −1

G G
f

f̃G G

* *

˜̃fG G

* *

f x f xI I( ) ˜( )= −1 = − −˜( )f xI I I I1 2 2

= − −˜( )f xI I I1 2 1 = −˜( )f xI I 1 = ˜̃ ( )f x

~f x( )˜ ( ˜ )f x =
Def: The dual map ˜ :f G G→

is the linear map given by

Note:

f=

I 2 0≠ .



Polarizing a quadric with respect to another

Fact:

Let S : G G→ and T : G G→
be symmetric outermorphisms,

P x x S x x= = ≠∈ ∗{ : ( ) , }G 0 0
Q x x T x x= = ≠∈ ∗{ : ( ) , }G 0 0

be the corresponding two quadrics.

Polarizing the multivectors of the quadric P
with respect to the quadric Q
gives a quadric R

and we have
 x T S T x∗ =( ˜ ( ))o o 0

x P∈ ⇔ Pol ( )
Q

x R∈
with equation

.

,

and let



P
Q

R

x T x∗ =( ) 0Q :
x S x∗ =( ) 0P :

R :   x T S T x∗ =( ˜ ( ))o o 0

Polarizing the quadric

with respect to the quadric

generates the quadric

The reciprocal quadric



Cartesian-Affine-Projective relationships

x

x*

x�Vn

Vn+1 Vn y� y*
= ⋅ −+

−
+( )y e y e

n n1

1

1
� Vn

x*
*

= y*

y

( )y e y
n

⋅ +
−

1

1

e1
en

Vn

Cartesian space

x*

The affine part of 
Projective Space:

�

y �
well
defined

Vn+1

en+1

Affine spaceAn

x* �= + +x e
n 1

An

Pn Vn

Pn Vn



The intersection of two lines in the plane

A
BC

D
P

a,b,c,d
*(  )

A,B,C,D
* (  )p

p

�

�

= (A B) �(C D)P

d

c
b

a

Affine plane

e3

Cartesian planeR2



The intersection of two lines (cont.)

P A B C D= ∧ ∨ ∧( ) ( )
= ∧ ∧[ ] − ∧ ∧[ ]A B C D A B D C

A B C A B C I∧ ∧[ ] = ∧ ∧( ) −1

= + ∧ + ∧ +( )( ) ( ) ( )a e b e c e e e e
3 3 3 3 2 1

= − ∧ −( ) ( )a c b c e e
2 1

= − ∧ − ∧ +( )( ) ( ) ( )a c b c c e e e e
3 3 2 1

= − ∧ − ∧( ) +( ) ( )a c b c c e e e
3 2 1

( ) ( )a c b c e e e e− ∧ − ∧( )3 3 2 1

= − ∧ −( )( ) ( )a c b c e e e e
3 3 2 1

0 =

contain  e3

does not 

≡ α

= −α βD C



The intersection of two lines (cont.)

= ∧ ∧( ) −A B D I 1

In the same way we get

= − ∧ −( ) ( )a d b d e e
2 1

Hence we can write p as:

p P=
*

= − ⋅ − −−(( ) ) ( )α β α βD C e D C e
3

1

3

= − + − − −−( ) ( )α β α α β β1

3 3 3
d e c e e

= − −−( ) ( )α β α β1 d c

contain  e3

does not 

contain  e3

does not 

β = ∧ ∧[ ]A B D

= −
*
( )α βD C



r

t
= t(s+ds)t1

u
u1

= -t(p-m)t
= - t1(p-m1)t1

m(s+ds)

=m(s) =
s

M

lim
ds��

�

�(m u) �(m1 u1)=

= m(s).

p

q

m m1

in-caustic

out-causticcurvature centre
of the mirror

Reflection in a plane-curve mirror



Reflection in a plane-curve mirror (cont.)

Making use of the intersection formula deduced earlier

we get

q m
p m t t p m n n

m
p m

p m n

− = − ⋅ − − ⋅

− −
− ⋅

(( ) ) ( ) )

˙̇
( )

( )
1 2

2

n
t
t

=
˙
˙

and introducing for the unit mirror normal

This is an expression of Tschirnhausen’s reflection law.



Reflection in a plane-curve mirror (cont.)

u

r

p

q

m

v

1 1 2
u m q m v m−

±
−

=
−

Tschirnhausens
reflection formula
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A Homogeneous Framework

for
Computational Geometry and Mechanics

David Hestenes

Department of Physics and Astronomy

Arizona State University, Tempe, Arizona, USA

Need: Euclidean

http://modelingnts.la.asu.edu

Can access related websites from this one

geometry supplies essential mathematical

underpinnings for physics, engineering and

Computer-Aided Geometric Design.

Question:

GEOMETRIC ALGEBRA Website:

How should we formulate Euclidean Geometry to

facilitate geometric modeling and analysis

optimize computational efficiency?

A fundamental problem in the Design of Mathematics

1

.

.



Standard model for Euclidean 3-space:

E3 = R3 = {x}= 3d real vector space

Rigid body motions and symmetries described by

Euclidean group E(3)

x −→ x′ = Rx + a

Invariant: (x )2 = (x′ ′)2

Computations: Require coordinates and Matrices

[x′] = [R] [x] + [a]

Drawbacks:

Extraneous information

(from arbitrary choice of coordinates)

Redundant matrix elements
(9

vs.

elements for 3 degrees of freedom)

Difficult to interpret

(parameters mixed in matrix elements)

Computationally inefficient

multiplications)

2

y y

~

(9 9 33



Geometric algebra eliminates need for coordinates:

Canonical form for orthogonal transformations:

Rx = RR Rx 1 parity = 1

Reflection represented by a vector a

Ax

Ax

Ax

x

= axa 1

Rotation = double reflection

Rx

Rx

=

=

BAx

= b( axa 1)b 1

(ba) x (a 1b 1) = RxR 1

Rotation represented by a versor (rotor, spinor, quaternion)

R = ba

Reduces composition of rotations/reflections to

geometric product of versors:

R2R1 = R3 ←→ R2R1 = R3

Extensive treatment in (Hestenes 1986)

ε Rε +−

a

ab
x

3



c

π/3

π/2

2 2 2

2

b 2

a, c     a   =  b   =  c   =  1
4 ( a b)   =    1

b,

a

c'
b 2'

3

3 Generators:

Symmetries of the Cube

Relations:
 ( b c)    =    1

2 ( c a)     =    1

a'

π/4

3

4



Problem:

Vector space model for E3 = R3 = {x}

singles out one point for special treatment

as the origin x = 0

Drawbacks:

Often need to shift origin to

simplify calculations

avoid dividing by zero

prove results independent of origin

Rigid body displacements combine

rotations multiplicatively and

translations additively,

destroying the simplicity of both

Solution:

Design a homogeneous model for E3 that

treats all points equally

treats both rotations and translations multiplicatively

[“homogeneous” in the sense of homogeneous coordinates]

5

~



Homogeneous Euclidean Geometry

Arena: Minkowski Algebra Rn+1,1 = G(Rn+1,1)

Rn+1,1 = vector space with signature (n + 1,1)

Null cone: {x |x2 = 0}

Hyperplane: {x |x e = 1}

Homogeneous model of Euclidean

Geometric algebra essential

space:

En = {x |x2 = 0, x e = 1} e2 = 0

x called a point in En e = point at infinity

Horosphere (F. A. Wachter 1792-1817), (originally with coordinates)

to make the horosphere

coordinate-free and computationally efficient

.
  e

  e

e
0

x

x

e

_

.

.

.

= 1

6
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Hermann Günther Grassmann (1809-1877)

Laid the foundations for geometric algebra

Set a direction for future development

But he failed to reach his main goal,

ultimately concluding that it was impossible

Grassmann’s Goal: To formulate

Euclidean geometry as an algebra of geometric objects

(points, lines, planes, circles, etc.)

Interpretation Computation

The homogeneous model for En within geometric algebra

reaches Grassmann’s Goal with many surprises!!!

7

integrated 
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    to
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Euclidean Geometry is inherent in

algebraic properties of homogeneous points

I. Point-to-point distance from inner products:

(x y)2 = x2 2x y + y2

=⇒

=⇒

Points must be null vectors! Why Grassmann failed!

Pythagorean theorem, triangular inequality, etc.

II. Lines and Planes from outer products

(another historical curiosity)

III. Geometric relations from algebraic products

e.g.: Point x lies on the line A or plane P if and

and

only if

x ∧A = 0

A =

A  =

x ∧ P = 0

P =

8

a ∧ b ∧ e = line segment or line thru pts a b

(a ∧ b ∧ e)2 = (a b)2 = 2a b = (length)2

a ∧ b ∧ c ∧ e = plane segment or plane

(a ∧ b ∧ c ∧ e)2 =

0 1 1 1
1 0 a b a c
1 b a 0 b c
1 c a c b 0

0 0

= 4(area)2

2

P  =2

Cayley-Menger determinant

Cayley, 1841 (Volumes) Menger, 1931 (distance geometry)

Dress and Havel, 1993 (relation to GA)

.

.
(x y)2 = 2x y = Euclidean distance.

.

.

..
. .



The homogeneous model of is related

to the standard inhomogeneous model by a

Conformal split:

A 1-to-1 mapping of En

En

= {x}
onto

the pencil of lines Rn = {x} through a fixed point e0,
defined by

x −→ x = x ∧ E = x ∧ e0 ∧ e

and the inverse mapping

x −→ x = xE 1
2x

2e + e0

where e0 ∧ e = E =⇒ E2 = 1

and eE = e = Ee (absorption)

This implies the isomorphism: En = Rn

and determines a split of the whole algebra:

Rn+1,1 = R Rn 1,1

where Rn = G(Rn) ,

and R1,1 has the basis: {1, e, e0 0, E = e ∧ e}

9

~



Conformal Splits for Simplexes

Point: a = (a 1
2 a2 e ) E = E(a +1

2 a2

2

+ eee )

= aE 1
2 a2 + ee

Product: ab = (aE)(Eb) = (a + 1
2 a

00

0

0

00+ ee )(b 1
2 b2 ee )

= 1
2 (a b)2 + a ∧ b + 1

2 (a2b b2a)e + (b a)e 1
2 (b2 a2)E︸ ︷︷ ︸ ︸ ︷︷ ︸

a a ∧ b

Similar to the mess from the spacetime split in STA

Line (or line segment) thru a, b, e

e∧a ∧ b

b

= a ∧ be + (b a)E︸︷︷︸ ︸ ︷︷ ︸
moment tangent

Plücker coordinates

.

a

0

b

a b

Plane (or plane segment)

e∧a ∧ b ∧ c = a ∧ b ∧ ce + (b a) ∧ (c a)E︸ ︷︷ ︸ ︸ ︷︷ ︸
moment tangent

a ∧ [ (b a) ∧ (c a) ] = a ∧ b ∧ c

a

b

c

tangent

.

.

.

1 0



All spheres and hyperspheres Enarin e uniquely

represented by “positive” vectors in Rn+1

Sn 1( p) = sphere with radius and center p

represented by vector s with

s2

(s e)2
= 2 =

s

s e
1
2

2e =⇒ pp 2 = 0

Can simplify with constraint s e = 1, so

s2 = 2 > 0, p = s 1
2

2e
.

.x

p

ρ

ρρ

ρ ρ

ρ

ρ ρ

ρρ

δ

δ

Eqn. for sphere: x s = 0 , x2 = 0

Conformal split: s = pE + 1
2 ( 2 p2)e + e

x p = 1
2

2 =⇒ 2 = (x p)2

0

Hn 1(n) = hyperplane rep. by vector n with
{

n e = 0
n2 = 1

Conformal split: n = nE =⇒ ne 2 = n2 = 1

Eqn. for hyperplane: x n = 0 , x2 = 0

or: x n =

.
(n)

δ > 0

H 
n -1

0

n

.
.

.

.

.

.
..

.

.

1 1

,
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The homogeneous model of En

maps all spheres and hyperplanes Rn

into hyperplanes thru the origin in Rn+1,1:

{x |x s = 0 , s2 > >0 , s e 0 ,  x2 = 0; x, s ∈ Rn+1,1}

x s = 0 is the eqn for a hyperplane thru the origin

i.e., a (n + 1)-dim subspace of Rn+1,1

s e = 0 A sphere thru e =∞ is a hyperplane

Sphere determined by n + 1 points: a0, a1, a2, . . .

. . .

. . .

. . .

. . .

.

.

.

.

.

.
.

.

.

an

s̃ a0 ∧ a1 ∧ a2 ∧ ∧ an 6= 0 tangent form

tangent form

Radius

I 

I 

and center p given by duality:

s = (

(
a0 ∧ a1 ∧ a2 ∧ ∧ an)

normal form

normal form

s

s e

2

= 2 , p =
s

s e
1
2

2e

Hyperplane = sphere thru ∞, say a0 = e

ñ = e ∧ a1 ∧ a2 ∧ ∧ an

n = (e ∧ a1 ∧ a2 ∧ ∧ an)

)

Eqn for sphere: x ∧ s̃ = 0 ⇐⇒ x s = 0

fl

ρ

ρ ρ





Example: Simson’s construction

.
.

...

.
.

.

A

AB C

C

D

P

1

B1

1

s̃

s̃

= A ∧B ∧ C = circumcircle of triangle e ∧A ∧B ∧ C

ρ2 =
s

s e

2

=
s̃†s̃

( ∧ e)2
=

(( C ∧B ∧A) (A ∧B ∧ C)) (e ∧A ∧B ∧ C)2

Identity: (H. Li)e∧A1∧B1∧C1 =
A ∧B ∧ C ∧D

2ρ2

A ∧B ∧ C ∧D = 0 ⇐⇒ e ∧A1 ∧B1 ∧ C1 = 0

D lies on circumcircle ⇐⇒ A1, B1, C1 are collinear

.
.

13



Conformal group

on         (or       ) { }E n n
Lorentz  group

      on     { }R n+1,1 n+1,1
= ~ = ~ Versor  group

      in     { }RR  2

Lorentz Trans. G ( = orthogonal trans.)

G(x) = Gx G 1 = σ

σ

σ

parity = 1

G = versor representation of G ( = spin rep. if ε

εε

εE

= +1)

For homogeneous points x

0 0

= x′2 = 0,

is a scale factor to enforce e x′

x′

= e x = 1

  .

  .

  .
  .

  .  .
(not a Lorentz invariant)

Conformal split

G [x + 1
2x

2e + e ]G 1

1

= [x′ +

+

1
2 (x′)2e + e ]E

x′ = g (x) is a conformal trans. on Rn

Versor rep. reduces composition of conformal transformations

to versor multiplication

g3(x) = g2[g1(x) ] ⇐⇒ G3 =

=

G2G1

Versor factors G = sk . . . s2 s1 vectors s2
i 6= 0

Euclidean group E(n) defined by     G e G        e

14
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Rotations & translations generated
multiplicatively from reflections

Reflection in the n-(hyper)plane n2 = 1

n(x) = nxn 1 = x′ σ = 1

Split form: = nE eδ n2 = 1

For plane thru pt c: n c = 0 =⇒ δ = n c

Rotation from planes n and m intersecting at point c:

G = mn = ( E + em c)(nE en c)

= mn

mn

m

e(m ∧ n) c

= R e(R c)

.

.

.

.

.

.

.
.

n

= R

.nm = 
R

Spinors as directed arcs

.
c n

m

Translation

Inversion

from parallel planes m,n

G = mn = (mE 0)(nE + eδ)

= 1 + 1
2ae = Ta

where a = 2nδ

generated by sphere vector s

n

δ

n

a

15



SE(3) = Euclidean group on E3

= { rigid displacements D} =
2
{spinors D}

D(x) = Dx D 1 D = TR

Translation by c: T = Tc = 1 + 1
2ec

Rotation axis: n = RnR†

Chasles’ Theorem: Any rigid displacement can be

expressed as a screw displacement

Proof: Find a point b on the screw axis so that

D = Tc‖Tc⊥R = Tc‖Rb = RbTc‖

where

Rb = R + eb R , c‖ = (c n)

Solution: b = c⊥(1 R 2) 1 = 1
2c⊥

1 R2

1 〈R2 〉

Screw form: D = e
1
2 S S = a screw

se(3) = Lie algebra of SE(3) = {S = in + em}

is a bivector algebra,

closed under S1 S2 = 1
2 (S1S2 S2S1)

Special

16
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.
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Screw theory follows automatically!

Screws: Sk = imk + enk

Product: S1S2 = S1 S2 + S1 S2 + S1 ∧ S2

Transform: S′k = USk = USkU 1 = AdU Sk

S′1S
′
2 = U(S1S2) Product preserving

 . .
 .

 . .

 .

 .

 .  .  .
 . .

 .  .

= U(S1 S2 + S1 S2 + S1 ∧ S2)U 1

Invariants: Ue = e , Ui = i

=⇒ U(S1 ∧ S2) = S1 ∧ S2 = ie(m1 n2 + m2 n1)

S′1 S′2 = S1 S2 = m1 m2 (Killing Form)

Coscrew (Ball’s reciprocal screw)

Sk = 〈Sie 〉2

0

0 00 0
= 1

2 (Sie + ie S) = ink + mke

Invariant: S1 S2 = S2 S1 = 〈 (S1 ∧ S2)ie 〉

= m1 n2 + m2 n1

Pitch: h = 1
2

S S

S S
= n m 1

*

* *

*

1 7



Screw Mechanics (of a rigid body)

I Kinematics of body pt. x = Dx0

  e0

D 1 D = D(t)

Ḋ = 1
2V D x

. = V x

V = iωωω + ev =⇒ ẋ = ωωω x + v

= “instantaneous screw” v = CM velocity

P = M V = iIωωω + mve = i`̀̀ + pe

= comomentum (a coscrew)

II Dynamics

Ṗ = W = iΓ + f = coforce (wrench)

=⇒ K̇ = V W = ωωω Γ + v f = Power

K = 1
2V P = 1

2 ωωω `̀̀ + v p = K.E.

More in NFCM

III Change of Frame x −→ x′ = Ux = UxU 1

=⇒ V ′ = U V Covariant U̇ = 0

P = UP ′ Contravariant

P ′ V ′ = P V Invariant

 .
 .

 .

 .

 . . .
 .  .  .

 . .

18


